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Preface

In 1925 A. Ekonomou, a professor then of Athens Polytechnic School, made the first
report of Brouwer’s program in the Greek mathematical literature in a lecture be-
fore the Greek mathematical society1. This was also the last in the 20’s, a decade in
which the community of central European mathematics faced the most fierce debate of
contemporary mathematics, the debate on the foundations of mathematics. Since its
protagonists were some of the most important German mathematicians of that period
(such as Hilbert and Weyl) and the German speaking Dutch mathematician Brouwer,
and the most influential journal was Mathematische Annalen, the term that sealed that
period is the German word Grundlagenstreit.
Hilbert had organized the Göttingen circle, gathering around him important math-
ematicians, like Ackermann, von Neumann, Bernays, occasionally philosophers, like
Husserl and Nelson, and physicists, like Born. In the foundations of mathematics he
was the leading personality of his program, formalism, while in physics he pursued a
program of axiomatic foundation of physical theories and of solid mathematical recon-
struction of them.
Brouwer, after an explosive topological period, almost devoted himself to his founda-
tional program, intuitionism, which, mainly through his direct followers (like Heyting),
rather then himself, was transformed into a school of reconstruction the whole of math-
ematics. Through the work of Troelstra and van Dalen, the leading names of the next
generation, this school is still alive in Holland.
Weyl moved philosophically between both, Hilbert and Brouwer. In 1918 though, in-
dependently from them, with strong philosophical motives (Husserl and Fichte were
two serious influences for him), Weyl contributed on the foundations of mathemati-
cal analysis with his original work, “Das Kontinuum”, the origin of predicativism. In
the early 20’s he espoused Brouwer’s intuitionism, disappointing his former Göttingen
teacher, Hilbert. Later he expressed his doubts on Brouwer’s program, accepting a kind
of Hilbert’s prevail, recognizing though, the closeness of the two programs. He never
stopped admiring Brouwer and stressing the value of intuitionism.
The echoes of Poincaré’s foundational views, and the rebirth of Frege’s logicism by
Russell, which had influenced even Hilbert between his early and later foundational
period, complete the philosophical scenery of that period. Finally, in the early 30’s
Gödel’s incompleteness theorems, the philosophical value of which is still discussed,
determined not only modern mathematical logic, but also the outcome of the founda-
tional debate.
Philosophers of science, like members of the Vienna circle, mathematicians, like Ram-
sey, philosophers, like Becker and Wittgenstein, were seriously involved, or influ-
enced by the debate.
The Grundlagenstreit was shaped by the personalities of the two of the most impor-
tant mathematicians of that period, Brouwer and Hilbert. Also, it was the product
of conceptual changes in the mathematics, starting in the 17th and culminated in the
19th century, and an expression of the close connection between mathematical and
philosophical thought in the mind of most of the great mathematicians previously men-
tioned.
All of them were well aware of the work of the most influential personality in the phi-

1[Ekonomou 1926] p.80.
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losophy of mathematics, Kant. More or less, all foundational programs of that period
were different responses to the Kantian model, after the mathematical “revolutions” of
the 19th century and the “revolutions” in physics of the early 20th century.
Even if Grundlagenstreit often had a polemic character, it was an expression of the
high level of the interconnection between mathematical and philosophical thought of
that period. Unfortunately, the “winner” of the debate was the weakest opponent,
naive mathematical realism, the kind of mathematical realism which “justifies” all of
standard set-theoretical mathematics. While both, mature formalism and intuitionism
(early and mature), agreed on their critique on mathematical realism, it was this “poor”
foundational framework which suited better to post-war mathematical community.

It was the conceptual changes brought by the development of non-Euclidean geometries,
the degeometrization and arithmetization of analysis, which influenced the main foun-
dational programs, rather than the set-theoretical paradoxes, as it has often been said2.
Although the resolution of paradoxes was an important issue, it was more important
to deal with the conceptual problems that were responsible for those paradoxes.
The main objective of our study is to present Brouwer’s Fan theorem (BFT), the most
central theorem of Brouwer’s Intuitionistic Analysis (BIA).
BIA is presented here in the spirit of Brouwer, meaning that we try to preserve Brouwer’s
non set-theoretic mentality, which is often neglected in modern presentations of intu-
itionism. Another non-standard element of our presentation is that intuitionistic logic
is not considered a beginning point of BIA, rather a necessary aftermath, in accordance
to Brouwer’s thought. His conclusions on the Principle of Excluded Middle (PEM)
follow his basic assumption on the nature of the fundamental objects of BIA. Brouwer
himself left the formalization of intuitionistic logic to his pupil Heyting.
On the whole, although post-Brouwer intuitionism turned out as a legitimate branch of
formal mathematics, it lost Brouwer’s revolutionary spirit. That was a result of certain
“social” conditions and also of weaknesses of BIA itself3.
Only a few mathematicians nowadays believe that there is a crisis in the foundations
of mathematics. Weyl’s views ([Weyl 1946] p.13) echo a very distant past.

[This history should make one thing clear: we are less certain than ever
about the ultimate foundations of (logic and) mathematics; like everybody
and everything in the world today, we have our crisis. We have had it for
nearly fifty years. Outwardly it does not seem to hamper our daily work,
and yet I for one confess that it has had a considerable practical influence
on my mathematical life: it directed my interests to fields I considered
relatively safe, and it has been a constant drain on my enthusiasm and
determination with which I pursued my research work. The experience is
probably shared by other mathematicians who are not indifferent to what
their scientific endeavours mean in the contexts of mans whole caring and
knowing, suffering and creative existence in the world.]

More polemic was Bishop’s isolated viewpoint4.

[There is a crisis in contemporary mathematics, and anybody who has not
noticed it is being willfully blind. The crisis is due to our neglect of philo-

2See e.g., [Giaquinto 2002].
3See [Heyting 1962].
4See [Bishop 1975] p.507.
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sophical issues. The courses in the foundations of mathematics as taught
in our universities emphasize the mathematical analysis of formal systems,
at the expense of philosophical substance. Thus it is the mathematical pro-
fession that tends to equate philosophy with the study of formal systems,
which require knowledge of technical theorems for comprehension. They do
not want to learn yet another branch of mathematics and therefore leave
the philosophy to the experts. As a consequence, we prove these theorems
and we do not know what they mean. The job of proving theorems is not
impeded by inconvenient inquires into their meaning or purpose. In order
to resolve one aspect of this crisis, emphasis will have to be transferred from
the mechanics of the assembly line which keeps grinding out the theorems,
to an examination of what is being proved.]

In our view, in modern times “organization” has replaced foundation. The questions
that bothered Brouwer’s generation still need to be examined, despite the prevailing
set-theoretical framework. The nature of continuum, the relation between language and
mathematics, maybe need to be reinvestigated.

The main purpose of our thesis is to present and discuss Brouwer’s proof of BFT. In
order to give a self-contained exposition of fan theorem an introduction to Brouwer’s
basic concepts and foundational principles is also given. Brouwer developed from the
beginning an interpreted mathematical theory of the continuum. Mathematical contin-
uum for him is the mathematical expression of a certain intuition. The realization of
this intuition belongs though, to his mature period, through the concept of spread. This
foundational attitude of Brouwer has many important consequences that post-Brouwer
intuitionism completely neglects.
Brouwer, trying to avoid the use of absolute infinity in the mathematical treatment
of the continuum, introduced choice sequences generated by the spread law. These
are “incomplete” objects or “on-going” objects and they are responsible for Brouwer’s
“new logic”. All Brouwer’s deviations from classical mathematics result from his use
of new concepts and his constructive methods. The concept of intuitionistic function
depends on Brouwer’s new concept of the continuum and since intuitionistic functions
are crucial to the formulation of fan theorem their study is included.
The proof of fan theorem is based on [Brouwer 1927]. Fan theorem is a consequence
of bar theorem, the proof of which is highly non-standard in structure, even for today
standards.
We also examine some consequences of fan theorem and especially Brouwer’s Uniform
Continuity theorem (UCT), according to which, a function simply defined on [0, 1] is
uniformly continuous. Just like continuity principle and fan theorem, this fact is the
result of the study of a different kind of function, “intuitionistic Function”.
Brouwer himself was never fully satisfied with his proof of fan theorem, although he
considered it an intuitionistic truth. We analyze some of the contemporary critique
on his proof and we provide another intuitionistic argument against the intuitionistic
validity of Brouwer’s proof, independently found by us.
We also give, as an Appendix, a classical development of the basic facts about Baire and
Cantor space. In that way we present the classical behavior of those classical objects
which have an intuitionistic analogue. We believe that all these classical results are
in some sense necessary to the understanding of the differences between classical and
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intuitionistic analysis.
We refer to pages of Brouwer’s papers through [Brouwer 1975] collective volume.

I would like to thank especially my supervisor Prof. Athanasios Tzouvaras for his
constant support and his trust. I also thank Associate Prof. Demetrios Betsakos and
Associate Prof. Ioannis Gasparis, members of my Thesis Committee, for their cooper-
ation and trust.

Thessaloniki,
December, 2010.
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1. Introduction to Brouwer: thesis, topology and intuitionism. The Dutch
mathematician Luitzen Egbertus Jan Brouwer (Overschie 1881- Blaricum 1966) was one
of the greatest mathematicians of his time5. Dieudonné, in [Dieudonné 1989], p.161],
refers to Brouwer’s epoch-making results of 1910-1912 as the “first proofs in algebraic
topology, since Poincaré’s papers can only be considered as blueprints for theorems to
come”.
Brouwer’s topological theorems gave Brouwer international fame and recognition. Their
proofs were based on new concepts and methods of his. Throughout his mathematical
life Brouwer was a great creator of concepts. In 1910 he defined rigorously the concept
of degree of a continuous map and relying exclusively on it he proved, mostly through
“fantastically complicated constructions” the celebrated Brouwer’s theorems6.
At the beginning of his great topological period Brouwer, tackling Hilbert’s 5th prob-
lem7, showed that all C0 groups of transformations of the real line are in fact Lie groups.
Attempting to extend this result to transformation groups of R2, he studied the then
known topology of the plane. Studying the related to this subject papers of Schönflies,
he discovered many counterexamples to Schönflies’ results. The most unexpected of
these brought him immediate recognition. Brouwer constructed a compact, connected
subset of the plane, which cannot be written as the union of two proper compact, con-
nected subsets and it is the frontier of three connected components of its complement.
Dieudonné describes accurately what followed (in [Dieudonné 1989], pp.168-9):

[From these early papers it would have been difficult to foresee the break-
through accomplished by Brouwer in the years 1910-1912, owing to a com-
plete change of outlook and a remarkably skillful use of the new concept
simplicial approximation that he introduced... In a rapid succession of pa-
pers published in less than two years, the “Brouwer’s theorems” (as they
are still called) made him famous overnight. They solved a whole batch
of problems on n-dimensional spaces for arbitrary n that had looked in-
tractable to the previous generation: invariance of dimension of open sets in
Rn, invariance of domain, extension of the Jordan curve theorem, existence
of fixed points of continuous mappings, singularities of vector fields, and
finally, based on ideas of Poincaré and Lebesgue, a definition of the notion
of dimension for arbitrary compact metric spaces.
In retrospect, it therefore seems legitimate to consider Brouwer as the co-
founder, with Poincaré, of simplicial topology. More precisely, it may be said
that Poincaré defined the objects of that discipline, but it is Brouwer who
imagined methods by which theorems about these objects could be proved,
something Poincaré had been unable to do.
... two features that characterize almost all his proofs of 1911-1912: a re-
markable originality and a great complexity.]

We give here an extremely brief account of “Brouwer’s theorems” and new concepts:

(a) The invariance of dimension: There is no homeomorphism f : Rn → Rm, if
n 6= m.

5[van Dalen 1999] and [van Dalen 2005] comprise his complete biography.
6Most of them are now simple consequences of homology theory.
7Hilbert’s 5th problem: Lie’s concept of a continuous group of transformations without the assump-

tion of the differentiability of the functions defining the group.
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Cantor, in 1877, had discovered a bijection of R onto Rn, a complete surprise that
seemed to threaten the foundations of analysis8. Peano’s curve (1890) was an example
of a continuous (but not injective) map of R onto Rn9. In order to save the intuitive con-
cept of dimension, Dedekind soon conjectured that there is no bicontinuous bijections
(homeomorphisms) of Rn onto Rm for m 6= n. It was Brouwer who proved Dedekind’s
conjecture, securing (ironically) the foundations of classical analysis.

(b) The invariance of Domain: If f : U → Rn an 1− 1, continuous function, where
U is an open subset of Rn, then f(U) is open in Rn.

Hence, the property of being a domain of Rn (i.e., a connected, open subset of Rn) is
invariant under 1− 1, continuous functions on U and in Rn.

The invariance of domain implies the invariance of dimension: Let n > m and e : Rn →
Rm a supposed homeomorphism. Then, if h : Rm → Rn is the 1 − 1 and continuous
mapping

(x1, x2, ..., xm) 7→ (x1, x2, ..., xm, 0, 0, ..., 0︸ ︷︷ ︸
n−m

),

the composite function h ◦ e is a 1− 1 and continuous function of Rn into Rn, therefore
(h ◦ e)(Rn) should be open, which is not, since there is no ball of Rn around (0, 0, ..., 0)
contained in (h ◦ e)(Rn).

(c) The Jordan-Brouwer theorem: If Σ is a subset of Rn homeomorphic to the
sphere Sn−1, then Rn-Σ has exactly two connected components.

This is a generalization of Jordan’s curve theorem (that a closed plane curve separates
the plane in two parts: its bounded interior and its unbounded exterior).

(d) The no separation theorem: If U is a connected open subset of Rn, and F ⊂ U
is a homeomorphic image of a compact subset K of Sn−1, distinct from Sn−1, then U−F
is connected.

(e) The fixed-point theorem: If f : Dn → Dn is a continuous function of the closed
ball Dn of Rn to itself, then f has a fixed point i.e., there is an x in Dn such that
f(x) = x.

The fixed point theorem is equivalent to the fact that the identity map I : Sn → Sn is
not null-homotopic i.e., it is not homotopic to a constant map. It is no surprise that
Brouwer was the first who gave the definition of homotopy in 191110.

Definition of dimension of a compact metric space: As Dieudonné points out
“the theorem of invariance of dimension did not give a definition of the word “dimen-
sion” as a number attached to a topological space and invariant under homeomorphisms
except for spaces locally homeomorphic to Rn, and even for these spaces the introduc-
tion of the auxiliary space Rn was not satisfactory for a notion that should have been an
intrinsic one”. Brouwer, relying on ideas of Poincaré and Lebesgue, defined a space of
dimension 0 as one containing no connected set with more than one point, and a space
X of dimension n > 0 by the property that n is the smallest positive integer such that
any two disjoint closed subsets of X are separated by a subset of dimension ≤ n− 1.
X has dimension n at a point P , if P has a fundamental system of neighborhoods of

8Such a bijection can be found e.g., in [Enderton 1977] pp.148-49.
9Peano’s curve is presented e.g., in [Gelbaum-Olmsted 1964] pp.133-34.

10For a modern reconstruction of Brouwer’s theorems see e.e.g., [Dugundji 1989] and for a compre-
hensive presentation of Brouwer’s original results and concepts see [Dieudonné 1989].
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dimension n. Brouwer then proved that with his definition Rn has dimension n at every
point.

The above results form the core of Brouwer’s topological period11. Brouwer did not
publish any important paper on topology after 1913, devoting his efforts to an intu-
itionist reconstruction of mathematics. Doing so, e.g., Hirsch notes (in [Hirsch 1976]
p.141) that Brouwer “repudiated some of his earlier results”. We briefly explain why
this was unavoidable.
Brouwer’s 1911-proofs of fixed point theorem were non-constructive from his intuition-
istic point of view. Brouwer, in the paper of 1911 in which he gave the definition of the
degree of a map, realized that this notion could be used to prove that a continuous map
f : Sn → Sn, such that deg(f) 6= (−1)n+1, has at least one fixed point. What he showed
was that if f has no fixed point, then deg(f) = (−1)n+1. As we explain in Paragraph
1.3, this is not a purely constructive existence proof, since the fixed point possesses only
a “logical” and not a “real” existence, at least within a certain constructive tradition.
Modern proofs are also non-constructive, reductio ad absurdum proofs. In [Brouwer
1952A] though, Brouwer not only gives a concrete intuitionistic proof that the fixed-
point theorem on the sphere in its classical form does not hold intuitionistically, but
also proves an intuitionistic fixed-point (core) theorem.
From the beginning Brouwer’s attitude towards his topological theorems was connected
to his philosophical ideas. Brouwer himself mentions (see [van Dalen 1999], p.178 or
[Brouwer 1928a]):

[I have restricted myself to the laying of the foundations of the theory of
dimension, and refrained from further dimension theoretic developments,
on the one hand because with the proof of the justification theorem12 the
intended purpose had been reached, on the other hand because an intuition-
istic realization of the subsequent considerations ... was, in contrast to the
justification theorem, not plausible.]

Koetsier and van Mill (in [Koetsier, van Mill 1997] p.145) state that:

[Brouwer’s work in dimension theory is constructive in the sense of the first
part of his dissertation ... manifolds are constructed out of simplexes and
manifolds and continuous mappings are handled by means of potentially

11There are many other results connected to Brouwer such as:

(i) The Phragmén - Brouwer theorem: If K is a compact connected subset of R2, then the
boundary of each connected component of R2-K is a connected subset.

(ii) The Poincaré - Brouwer theorem: Every continuous non-vanishing vector field on an even-
dimensional S2n must contain at least one normal vector. In particular, there can be no continuous
non-vanishing vector field of tangential directions on any S2n.
As a consequence, each f : S2n → S2n either has a fixed point or sends a point to its antipode.

(iii) Brouwer’s reduction theorem: If F is a closed subset of of a second countable topological
space X and F possesses an inductive property P , there is an irreducible closed subset of F which
possesses P .

A property P of subsets of X is called inductive iff whenever each member of a countable nest of closed
sets has P , then the intersection has P . Also a set F is irreducible with respect to P iff no proper
closed subset of F has P .

but we mention here only the most famous.
12That Rn has dimension n.
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infinite systems of approximations similar to the way in which in the dis-
sertation the continuum is handled by means of the dual scale13...his topo-
logical notions always refer to systems that can be considered as mentally
constructed...the fact that there are instances in his topological work where
Brouwer sins against his own intuitionistic views, does not run counter to
the existence of a basic unity between the work in his dissertation and his
topological work.]

Brouwer showed the same kind of mathematical power and originality in his own pro-
gram of foundation and reconstruction of mathematics, intuitionism, on which he al-
most devoted his creative powers. Although the intuitionism of French mathematicians
Borel, Lebesgue and Poincaré shares some common philosophical ideas with Brouwer’s
intuitionism, it did not consist an organized program of foundation of mathematics with
a technical influence on Brouwer.

Brouwer’s intuitionism may be divided in three periods: early intuitionism (1907-
1915/6), mature intuitionism (1915/6-1927/8) and late intuitionism (1927/8-1955).

Early intuitionism (1907-1915/6): Starting point of this period is Brouwer’s doc-
toral thesis of 1907 “Over de Grondslagen der Wiskunde”14. Besides some purely mathe-
matical contributions, like Brouwer’s partial solution to Hilbert’s 5th problem, his thesis
is a systematic presentation of the original philosophical views of young Brouwer on the
foundations of mathematics and his critical comments on the prevailing views of that
era.
In his thesis we find for the first time the now standard distinction between mathe-
matics (mathematics of the first order) and meta-mathematics (mathematics of higher
order), a distinction made by Brouwer in order to give an elegant critique on Hilbert’s
early formalism ([Brouwer 1907], pp.194-195). Brouwer rightly demanded priority in
the mathematics - meta-mathematics distinction from Hilbert, in [Brouwer 1928].
As van Stigt mentions, (in [van Stigt 1990], p.viii), Brouwer’s thesis “was the mani-
festo of an angry young man taking on the mathematical establisment on all fronts”15.
This “anger” though is not only a result of youth, that would undermine Brouwer’s
argumentation. For Brouwer mathematical truth goes beyond mathematics, reflecting
human mind itself. As Brouwer notes, in [Brouwer 1981] p.90:

[The stock of mathematical entities is a real thing, for each person, and for
humanity.]

On the whole, Brouwer’s thesis and the papers that followed it in the early period form
an exposition of general philosophical principles but not a reconstruction of mathemat-
ics based on these principles.

Mature intuitionism (1915/6-1927/8): It is the reconstruction of mathematics
based, roughly, on the fundamental principles of early intuitionism. The mathematical
continuum is the main object of study. Intuitionistic analysis is the mathematical study

13The dual scale is a potentially infinite systems of points (cuts) which Brouwer applies on the
preexisted continuum.

14Translated as “On the Foundations of Mathematics” in Brouwer’s collected works.
15A complete, mostly historical, description of Brouwer’s thesis, which was reedited by van Dalen

([van Dalen 2001]), is [Kuiper 2004].
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of the continuum as it is interpreted through the concept of spread. Although contin-
uum was in early intuitionism as fundamental as the concept of number, in mature
intuitionism it is described through a generator of sequences, the spread of reals (see
Paragraph 5).
Mature intuitionism starts in 1915/6 where the continuity principle is found in Brouwer’s
lectures, a starting point of Brouwer’s analysis, and together with all other Brouwer’s
concepts and results lead to Brouwer’s fan theorem and Uniform Continuity theorem.
In 1927 Brouwer gives the most standard proof of fan theorem, the one we describe in
Paragraph 11, which puzzled his contemporaries and it is still a matter of debate, with
respect to its compatibility with the rest of intuitionistic epistemic principles. Brouwer’s
period of reconstruction of mathematics ends, roughly, a year later with the “Annalen
affair”.

Late intuitionism (1927/8-1955): Brouwer did not provide a significantly new the-
orem or a new proof of fan theorem in this period of his life. His late contributions are
extensions or recapitulations of his mature period. 1955 is the year of his last contri-
bution on intuitionism.

In our opinion, Brouwer was the greatest philosopher-mathematician of his era. That
is, regarding the foundations of mathematics he reacted more than a philosopher rather
than a mathematician, by not hesitating to deny a large part of his (even own) contem-
porary mathematics in order to be consistent with his philosophical beliefs. In contrast,
Russell and Hilbert were the great mathematicians-philosophers of their time. That is,
their philosophical ideas were technically influenced by their need to secure the whole
of their contemporary mathematics. Russell’s Axiom of Reducibility and late Hilbert’s
program exemplify this.
One of the main reasons that Brouwer’s intuitionism was treated as a curiosity to
be dismissed by his contemporaries was its exclusion of large parts of accepted set-
theoretical mathematics and its inclusion of results which contradict classical mathe-
matics. Brouwer’s views, developed in a milieu favoring abstraction against construc-
tivism, often had a polemic character. But his passion was the result of the struggle of
a honest thinker and great mathematician to express his original ideas.
Brouwer was often seen as a curiosity himself, as a person “eager to contradict”16.
Smorynski (in [Smorynski 1977] p.822) talks about Brouwer’s “bizarre attempt to turn
mathematics into a religion” and “when, in 1920, Weyl fell prey to Brouwer’s lunacy,
David Hilbert decided to intervene”. These expressions seem to us, to say the least,
completely unjust.
In 1912 Brouwer became a professor at the University of Amsterdam. His inaugural
address “Intuitionism and Formalism” was a severe attack on the extremities of early
formalism and the axiomatic method and a call for the transformation of mathemat-
ics along the intuitionistic principles. The debate between intuitionism and formalism
turned into a debate between Brouwer and Hilbert. In 1928 Brouwer was excluded,
on Hilbert’s decision, by the editorial board of Mathematische Annalen, the most im-
portant mathematical journal of that period17. Brouwer collapsed and withdrew from
the Grundlagenstreit two years before Hilbert’s program receive a serious blow, Gödel’s

16These words, heard in Logic Colloquium talk in Athens 2005, made, unfortunately, many people
to laugh.

17For the details of this sad story see [van Dalen 2005] and [Reid 1986] pp.184-188.
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proof of unprovability of the consistency of arithmetic18.
Brouwer was a powerful mathematical and philosophical mind whose impact can be
found in all aspects of modern constructivism, modern logic and modern topology. In
the 20th century two schools of research flourished in Holland, intuitionistic mathe-
matics and classical topology, both stemming from Brouwer’s work. His general philo-
sophical ideas were a major contribution to the local Dutch philosophical movement
“Significs”, while his philosophical 1929 work “Mathematik, Wissenschaft und Sprache”
had an impact on Gödel regarding the relation between language and mathematics19.

2. Trees, fans and König’s lemma. We shall give here the basic definitions and
facts of a “language” basic for the rest of the technical part of our study. All concepts
of this paragraph are understood classically.
Let X be a non-empty set and n ∈ N. Xn is the set of finite sequences of length n of
elements of X. I.e.,

Xn =

{
{u : {0, 1, 2, ..., n− 1} → X} , if n 6= 0
∅ , if n = 0

where ∅ denotes here the empty sequence. The set of all finite sequences of elements of
X is denoted by X<N and

X<N =
⋃
n∈N

Xn.

The length of a finite sequence u of elements of X is denoted by l(u), while l(∅) =
0. If l(u) = n, we say that u is an n-sequence. If u = (u0, u1, ..., un−1) and w =
(w0, w1, ..., wk−1) belong to X<N, then u is an initial segment of w, u � w, iff n ≤ k
and u = w|k. Then we say that w dominates u or w is a descendant, or an extension
of u and u is an ancestor of w. Also, u,w are said compatible iff u � w or w � u.
Otherwise, they are called incompatible and we denote this by u ./ w.
The concatenation u a w of u,w is the finite sequence

(u0, u1, ..., un−1, w0, w1, ..., wk−1).

The concatenation u a (k) of finite sequence u with the 1-sequence (k) is denoted
u a k and u a k is called an immediate successor of u, or u an immediate predecessor
of u a k.
XN is the set of all infinite sequences α20 of elements of X i.e.,

XN = {α|α : N→ X}.

A finite sequence u is an initial segment of α, u ≺ α, iff there is n such that u = α|n.
We also write then, α|n = nα.

A tree on X is a subset T ⊆ X<N closed under initial segments i.e.,

(w ∈ T ∧ u ≺ w)⇒ u ∈ T.
18The proof of the consistency of arithmetic was vital to the completion of Hilbert’s formalism. Even

from 1900 the consistency of arithmetic was second in Hilbert’s list. In 1899 Hilbert had reduced the
consistency of geometry to the consistency of arithmetic.

19For this influence see [Hesseling 2003] pp.281-86.
20Throughout this work we use small Latin letters for finite sequences and Greek small letters for

infinite sequences.

12



If there is w ∈ T , i.e., if T is non-empty, then ∅ always belongs to T , since ∅ � w. Each
element of T is called a node (or branch, or path) of T , while an infinite branch of T is
a sequence α of XN such that nα ∈ T for each n. The body, [T ], of T is the set of all
infinite branches of T , i.e.,

[T ] = {α|α ∈ XN : (∀n)(nα ∈ T )}.

A tree T is called pruned iff every u in T has a proper extension w � u. Also, a tree T
is called splitting iff each node u of T has incompatible extension nodes in T i.e.,

(∀u ∈ T )(∃w1, w2 ∈ F ) u ≺ w1, w2 ∧ w1 ./ w2.

We may correspond to a tree (X,T ) a structure (A, l, S) where A is a non-empty set of
points, l : A → N, with l(a) = n is the level of point a, and the relation aSb, “b is an
immediate successor of a” satisfies the following:

s1: ∃!a0 such that l(a0) = 1, and a0 is called the root of the tree.
s2: ∀b 6= a0 ∃!a: aSb, i.e., each point besides the root has a unique predecessor.
s3: If aSb, then l(b) = l(a) + 1

Obviously, the correspondence is established by interpreting the nodes of T as points,
(A = T ), the ∅ sequence as the root of the tree, which we also denote by <>, the length
of a node plus 1 as the level of a node and the uSw relation as the immediate extension
relation of a node u of T . Then, a tree clearly has the well-known tree-visualization.
A subtree S of a tree T , S � T 21, is a tree such that S ⊆ T .
Characteristic examples of trees on X are the Baire tree X , where X = X<N and the
Cantor trees CX , where CX = {x0, x1}<N and x0, x1 belong to X. Obviously, CX ≺ X .
If A ⊆ XN and T is a tree on X, we define the set A∗ of initial segments of elements of
A which cut the tree T , i.e.,

A∗ = {nα|α ∈ A ∧ nα ∈ T} ∪ {∅}.

Proposition 2.1: (i) A∗ � T .
(ii) A ∩ [T ] ⊆ [A∗].
(iii) [T ]∗ = T and A = [T ]⇒ [A∗] = A.

Proof: (i) Let w ∈ A∗ and u � w. By definition w = nα for some n and some α in A.
So, u = mα for some m ≤ n, therefore u ∈ A∗. Since ∅ belongs also to A∗, A∗ is closed
under initial segments and since A∗ ⊆ T , A∗ � T .
(ii) If A ∩ [T ] = ∅, then (ii) holds trivially. If there is α ∈ A ∩ [T ], then α ∈ [T ], hence
nα is in T for each n. Therefore, α ∈ [A∗].
(iii) [T ]∗ = T is trivial and using it we get [A∗] = A if A = [T ].�
In order to give an example of an A such that A ∩ [T ] ( [A∗], consider A = XN − {α},
where α any element of XN and the Baire tree X . Each nα is an nβ for some β in XN,
therefore, [A∗] = [X ] = XN ) A.

XN becomes a topological space as the N-product of X with the discrete metric. The
standard basis for its topology is the family of the sets

B(u) = {α|α ∈ XN : u ≺ α},
21We use for simplicity the same symbol of partial relation � while its context is made clear by the

fixed use of symbols of objects.
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satisfying:

(i) u ≺ w ⇒ B(w) ⊆ B(u).
(ii) u ./ w ⇒ B(w) ∩B(u) = ∅.
(iii)

⋃
uB(u) = XN and, if t ≺ u and t ≺ w, then Bt ⊆ B(u) ∩B(w).

XN is also a metrizable space and there is a bijection between pruned trees on X and
closed subsets of XN22.

If T is a tree on X and S is a tree on Y , a map Φ∗ : T → S is called monotone iff

u � w ⇒ Φ∗(u) � Φ∗(w).

A monotone function Φ∗ is extended to a function Φ : D(Φ∗)→ [S], where

D(Φ∗) = {α|α ∈ [T ] : limnl(Φ
∗(nα)) =∞},

and Φ is defined by

Φ(α) =
⋃
n

Φ∗(nα).

If D(Φ∗) = [T ], then Φ∗ is extendable to the whole body of T and it is called proper.
Note that if Θ(α) = β, where Θ is a function on infinite branches of a tree, classically
there is no need to know how this correspondence has become possible. The concept of
classical function is too abstract, even the argument and its image are infinite objects.
These too are considered known or given and no question arises on how we know them.
So, if w is an initial segment of β, then by continuity of Θ, α ∈ B(u) ⊆ Θ−1(B(w)), for
some u i.e.,

(∗) (∀w ≺ β)(∃u ≺ α)(γ � u⇒ Θ(γ) � w).

Next result shows that continuity of Θ is connected to a mechanism which “explains”
how Θ(α) = β is possible.

Proposition 2.2: (i) Let Φ∗ : T → S a monotone map. Then, D(Φ∗) is Gδ in [T ] and
Φ is continuous.
(ii) If Θ : G→ [S] is continuous, where G is a Gδ subset of [T ], then there is a monotone
map Φ∗ : T → S such that Θ = Φ.

Proof: (i) The most natural way to write D(Φ∗) as the intersection of an infinite family
of sets is to consider the family of Gm, where

Gm = {α|α ∈ [T ] : ∃nm ∈ N l(Φ∗(nmα )) > m}.
Obviously D(Φ∗) =

⋂
mGm.

If α is in Gm, then l(Φ∗(nmα )) > m. If β � nmα , then β is in Gm, therefore B(nmα ) ⊆ Gm,
which says that Gm is open.
To show that Φ is continuous it suffices to show that Φ−1(B(w)) is open in [T ], where
w ∈ S. Since,

α ∈ Φ−1(B(w))⇔ Φ(α) ∈ B(w)⇔
⋃
n Φ∗(nα) ∈ B(w)

⇔ ∃k :
⋃k
n=1 Φ∗(nα) � w ⇔ ∃k : Φ∗(kα) � w,

then D(Φ∗) ∩B(kα) ⊆ Φ−1(B(w)), and D(Φ∗) ∩B(kα) is open in D(Φ∗).
(ii) We shall prove here only the proper case where G = [T ], since this is the case we
need in Chapter 223. Note that [T ] is trivially Gδ. In (∗) there is a connection between

22All the fact on trees which we do not prove here are shown in the Appendix, where X = N.
23The proof of the general case can be found in [Kechris 1995] p.8.
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u and w, but it is possible that (∗) is true for u and w
′
, where w

′ 6= w. It is therefore
natural to define for a fixed u ∈ T the set

Ω(u) = {w|w ∈ S : γ � u⇒ Θ(γ) � w}.

It is trivial to check that

(a) <> ∈ Ω(u), therefore Ω(u) is non-empty.
(b) Ω(u) is a subtree of S.
(c) w,w

′ ∈ Ω(u)⇒ w � w
′ ∨ w

′ � w.
(d) u � u

′ ⇒ Ω(u) ⊆ Ω(u
′
)

We define Φ∗ as follows:

Φ∗(u) =

{
w0 , if ∃w0 ∈ Ω(u) : l(w0) = l(u)
sup{w|w ∈ Ω(u)} , otherwise

Φ∗ is well defined since, if ∃w0 ∈ Ω(u) : l(w0) = l(u) i.e., if w’s in Ω(u) are at least
as long as u, then there is only one w0 with above property because of (c). If there
is no such w0 i.e., if w’s in Ω(u) are short with respect to u, then Ω(u) is finite and
sup{w|w ∈ Ω(u)} is well defined (if Ω(u) was infinite, then there would be w’s in Ω(u)
arbitrarily long, and then, by (b), there would be a w of length l(u)). In both cases

Φ∗(u) ∈ Ω(u).

Monotonicity of Φ∗ is a direct consequence of (d) in both cases of its definition.
We need to show that, if α is in [T ], then the sequence Φ∗(nα) is not stagnant. Suppose
that it is i.e., (∃n0 ∈ N)(∀n ≥ n0)Φ∗(nα) = w1, for some w1 ∈ Ω(u). Consider n such
that n > n0 and n > l(w1). For such n, w1 = sup{w|w ∈ Ω(nα)}, since nα is longer
than w1. Consider now node w, such that w1 ≺ w ≺ β. By continuity of Θ, there is
m ∈ N such that γ � mα ⇒ Θ(γ) � w i.e., w ∈ Ω(mα).
If m < n0, then Φ(mα) = w|m. But since, by (d), Ω(mα) ⊆ Ω(nα), w ∈ Ω(nα) and w1

is not sup{w|w ∈ Ω(nα)}, which is absurd.
If m ≥ n0, then Φ(mα) = w1. Since w ∈ Ω(mα), then by (d), w1 is not sup{w|w ∈
Ω(nα)}, for an n, such that n > n0 and n > l(w1), something which is again absurd.

Finally, we show that Θ = Φ i.e., Θ(α) =
⋃
n Φ∗(nα) = Φ(α). If there was an α such

that Θ(α) 6= Φ(α), then there exists n, such that Φ∗(nα) ⊀ Θ(α). But, by definition of
Φ∗(nα), γ � α⇒ Θ(γ) � Φ∗(nα). Since α � nα, Θ(α) � Φ∗(nα), which contradicts our
hypothesis. Therefore, Θ = Φ.�
The above proposition gives the impression that a continuous function Θ : [T ] → [S]
is less abstract object than an arbitrary function Θ : [T ] → [S], since Θ determines
Φ∗ which computes Θ. But this determination is abstract itself, since the definition of
Ω(u) is far from easy to actually operate. I.e., it is non-trivial to show that a node w of
S belongs to Ω(u), since, in general, it is impossible to check in finite time that every
γ � u has the property Θ(γ) � w.

A fan, or a finitely branching tree, is a tree each node of which has a finite number of
immediate successor nodes. A subfan G of a fan F is just a subtree of F ; then G is also
a fan. Obviously, Cantor trees are fans.
If T is a tree and A is any subset of XN, we define < A > to be the set of nodes of T
which precede some node of A i.e.,

< A > = {u|u ∈ T : ∃w ∈ A w � u}.
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Then, it is clear that:

(i) < A > � T .
(ii) If T is a fan, then < A > is also a fan.
(iii) If A ⊆ T , then A ⊆ < A > and < A > is the least subtree of T containing A.

If T is an arbitrary tree such that each branch of T is finite, then T has not in general
a branch of maximum length. E.g., the tree T on N, for which the constant sequences

(1), (2, 2), (3, 3, 3), ..., (n, n, ..., n︸ ︷︷ ︸
n

), ...

are its nodes, is such an infinitely branching tree.
If a tree F though, is a fan with all its branches being finite, then there is always a
branch of F of maximum length. This is the content of König’s lemma (KL)24.

We show first that König’s lemma has the following equivalent formulations.

Proposition 2.3: If F is a fan on X, then the following are equivalent:

KL1: If every branch of F is finite, then F has a branch of maximum length.
KL2: If F has no branch of maximum length, then F has an infinite branch α.
KL3: If F has a branch of each finite length n, then F has an infinite branch α.
KL4 (Unendlichkeitslemma): If F has infinite number of nodes (i.e., if F is infinite),
then F has an infinite branch α.

Proof: KL1 ⇒ KL2: By contraposition on KL1.
KL2 ⇒ KL3: If F has a branch of each finite length n, then F has no branch of
maximum finite length.
KL3 ⇒ KL4: If F has infinite number of nodes and there is n such that no node of F
has level n, then there is no node of F with level > n, since F is closed under initial
segments. Hence, all the infinite nodes of F have level < n. But then, since F is a fan,
F is finite, which is a contradiction.
KL4 ⇒ KL1: By contraposition on KL4, if there is no infinite branch, then F is finite.
Therefore, there is a branch of maximum finite length.�
We prove now König’s lemma in the form KL4.

Proof of König’s lemma: (König’s initial proof) We call a node of F good iff it has
infinite descendants. The root of F is good, since F is infinite. A node of F is called
bad iff it has a finite number of descendants.
If all the immediate successor nodes of a node u are bad, then u is also bad, since F is
a fan.
Hence, by contraposition, a good node has an immediate descendant node which is also
good. So, the root <> of F has a good successor node (α0), which in turn has a good
successor node (α0, α1), etc. By that way an infinite branch

(α0, α1, α2, ..., αn, ...)

of F is formed.�
In the end of the above proof we used the, weaker to the Axiom of Choice (AC), Prin-
ciple of Dependent Choices (PDC):

24König’s lemma (1926) was used in the proof of a generalization of the Cantor-Schröder-Bernstein
theorem. Its story can be found in [Franchella 1997].
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For each set A and binary relation P ⊆ A× A on A,

(a ∈ A) & (∀x ∈ A)(∃y ∈ A)(xPy)

⇒ (∃f : N→ A)(f(0) = a) & (∀n ∈ N)(f(n)Pf(n+ 1)).

If A is the set of good nodes of F , a = <>, and P on A is the relation S of F , by
PDC, the whole infinite branch α, and not an as large as we want initial segment of α,
is formed.
In that way the infinite branch α exists in the absolute sense of the infinite25.

Consider the tree T on N the only nodes of which are the 1-nodes (1), (2), ..., (n)....
Obviously, T satisfies the content of KL1 but it is not a fan, since the root has infinitely
many immediate successor nodes. Therefore, the inverse of KL is not true. Also, T
does not satisfy the content of KL4, therefore, KL4 is equivalent to KL1, KL2, KL3,
only if T is a fan.
The argumentation in the proof of König’s lemma justifies the following, more general
scheme, which we call König’s scheme (KS):

Let F be an infinite fan and G(u) a predicate on nodes.
(i) G(<>), and
(ii) [(∀u a k ∈ F ) ¬G(u a k)]⇒ ¬G(u)
Then, (∃α ∈ [F ])(∀n ∈ N) G(nα).

Obviously, if we define for an infinite fan F the predicate

G(u) ≡ u is a good node

then, KS ⇒ KL, since a node is good or bad, bad being the negation of good.

That F has to be infinite in KS can be seen by considering a tree with a finite number
of immediate successors of the root and no other nodes. If we define

G(u)⇔ ¬[(∃v � u)l(v) = l(u) + 2],

25A proof can be given through a consequence of PDC, the principle of countable choices (PCC).
According to it, if R ⊆ N×A, a binary relation on N and set A,

(∀n ∈ N)(∃a ∈ A)(nRa)⇒ (∃f : N→ A)(∀n ∈ N)(nRf(n)).

Knowing that each good node of the fan F has a good successor node and by the existence of an
enumeration (an) of the nodes of F (the enumeration is possible, since F is a fan), we define the
following R ⊂ N×A:

R(n) =

{
a0 ,if an is bad
gs(an) ,if an is good

}
,

where gs(an) is a good successor node of an. By PCC, there is an f : N→ A such that nRf(n). The
infinite branch of F is:

b0 = a0
b1 = f(a0)
b2 = f(δ(b1))

..........
bn = f(δ(bn−1))

..........

where δ(bn) is the index of bn and the indices of bn are with respect to the fixed enumeration of the
nodes of F .
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then G satisfies the hypotheses of KS but the specific tree cannot have an infinite
branch. So, KS applies necessarily to infinite fans. Note also, that while the property
of good node satisfies

(G(u) ∧ v ≺ u)⇒ G(v),

this property, which turns the nodes u of F satisfying G into a subtree of F , is not
necessary to the proof of König’s lemma. Property G of the above counterexample does
not, generally, satisfy it.

Although it is not evident, KS is equivalent to an induction scheme, Bar induction,
which proves a consequence of KL on trees, the Bar theorem on trees. Bar theorem
and Bar induction are classical formulations, in the languages of trees, of Brouwer’s
fundamental Bar theorem and Kleene’s Bar induction scheme, which codifies Brouwer’s
proof of Bar theorem26, the same way KS codifies König’s proof of KL.
A subset B of a tree T is called a bar of T iff each infinite branch of T cuts B i.e.,

(∀α ∈ [T ])(∃n ∈ N)nα ∈ B.

A sub-bar B0 of a bar B of T is a subset of B which is also a bar of T .

Proposition 2.4 (Bar theorem on fans (BTF)): If B is a bar of a fan F , then B
has a finite sub-bar.

Proof: Let B0 be the set of those nodes of B with no proper initial segment also in B
i.e.,

B0 = {w|w ∈ B : (u ≺ w)⇒ u /∈ B}.
B0 is called the thin bar contained in B. As we have already remarked, < B0 > is a
subfan of F and B0 ⊆ < B0 >. If < B0 > has an infinite branch α, then α cuts B0 at
nα = w. Since (n+ 1)α ∈ < B0 > too, then, by the definition of < B0 >, there is some
w
′ ∈ B0 such that

w ≺ (n+ 1)α � w
′
,

which is absurd, since B0 is thin.
By contraposition in KL4, < B0 > is finite, therefore, B0 is also finite.�
Bar theorem is considered to be a “constructive” version of König’s lemma. This con-
structive character though, is not at all present here. In Paragraph 3 we comment on
the non-constructive character of König’s lemma. A constructive character is gener-
ated in Brouwer’s interpretation of the related concepts and in Brouwer’s proof of Bar
theorem. The Brouwerian induction scheme which codifies his proof of Bar theorem
becomes here the Bar induction on fans (BIF).

If F is an infinite fan27 and B, W are predicates on the nodes of F such that:

(i) (∀α ∈ [F ]) (∃n)B(nα), and
(ii) (∀u ∈ F ) B(u)⇒ W (u), and
(iii) [(∀u a k ∈ F ) W (u a k)]⇒ W (u),
Then, W (<>).

Condition (i) expresses the fact that the set of nodes u of F such that B(u) is a bar of
F . BIF expresses a kind of backward induction for W (u), going from the validity of W

26We study these results in Paragraph 13.
27If we replace F by an arbitrary tree we get the bar induction scheme on trees (BIT).

18



on the nodes of F down to the validity of W (<>).

Proposition 2.5: BIF ⇒ BTF .

Proof: If B is any bar of F we define the following predicate W (u), u ∈ F :

W (u) ≡ (u ∈ B) ∨ (∃B0 ⊆ B : (∀α � u)(∃n ∈ N) nα ∈ B0).

W (u) trivially satisfies condition (ii) of BIF. Also, if (∀u a k ∈ F ) W (u a k), then
there is a finite subset Bk

0 corresponding to each u a k. Since there are finite only
nodes u a k in F which extend u, then the set

Bu
0 =

⋃
uak∈F

Bk
0

is a finite subset of B and W (u) is satisfied. If some nodes u a k belong to B then Bu
0

is formed by the union of those {u a k} with all the rest sets Bk
0 . Again, if u /∈ B, Bu

0

satisfies the definition of W (u)-validity.
The conclusion of BIF says that there is a finite subset B0 of B such that each sequence
which extends the root cuts B0. Since every F -sequence extends the root, W (<>)
expresses the fact that the subset B0 which corresponds to the root is a finite subfan
of B. If W (<>) is interpreted as <> ∈ B, then {<>} is the finite subfan of B in
question.�
Proposition 2.6: KS ⇔ BIF .

Proof: (KS ⇒ BIF ) Suppose (i)-(iii) of BIF and also the negation of BIF’s conclusion
i.e., ¬W (<>). If we define

G(u) ≡ ¬W (u),

where u ∈ F , then the (i) and (ii) of KS are trivially satisfied, since ¬¬W (<>) ⇔
W (<>). Therefore, ∃α ∈ [F ] G(nα), ∀n ∈ N, or equivalently, ¬W (nα),∀n ∈ N. But,
α necessarily cuts the bar B, i.e., ∃m ∈ N such that mα ∈ B, therefore, by (ii) of
BIF, W (mα), which is a contradiction. Hence, given KS, the hypothesis ¬W (<>) is
contradictory to the hypotheses of BIF, therefore ¬¬W (<>) holds, which classically
gives W (<>).

(BIF ⇒ KS) Assume hypotheses (i) and (ii) of KS and the (classical) negation of its
conclusion i.e., (∀α ∈ [F ])(∃n ∈ N)¬G(nα). We define

W (u) = B(u) ≡ ¬G(u),

where u ∈ F . Then, hypotheses (i)-(iii) of BIF are satisfied. Hence, W (<>) ⇔
B(<>)⇔ ¬G(<>), which contradicts hypothesis (i) of KS. Therefore, (∃α ∈ [F ])(∀n ∈
N)G(nα).�
So, though it was not at all clear at the beginning, KS is classically a kind of induction,
namely the backward kind of induction of BIF. This is not intuitionistically true, since

¬¬P → P,

which is used in both directions of the above proof, is only classically accepted. In later
paragraphs we see that this is not the only problem from an intuitionistic point of view.
The above results are described with the following diagram:
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KL⇒ BTF
⇑ ⇑
KS ⇔ BIF

König’s lemma is connected to compactness. E.g, the compactness theorem of Propo-
sitional Calculus can be proved through KL (see e.g., [Smullyan 1968], pp.30-34). KL
is also used in proving that if T is a pruned tree, [T ] is compact iff T is a fan28. Also,
a proof of Ramsey theorem can be given through KL (see [Simpson 1999] p.123).

3. Brouwer’s Fundamental Principle. In the proof of König’s lemma we used a
standard criterion of existence, in order to prove the existence of the infinite branch
(α0, α1, α2, ..., αn, ...), which we call Principle of Logical Existence (PLE). Accord-
ing to it,

A mathematical object, satisfying some property P , exists if the hypothesis of its non-
existence leads to an absurdity.

In symbols,
∃loxP (x) ≡ ¬∃xP (x)⇒ ⊥,

where ⊥ denotes absurdity. Using PLE we proved the existence of a good successor node
α(0) of the root, without being able though to indicate which one of the successor nodes
of the root really is good. The same method was used in each subsequent step of the
formation of the infinite branch. Hence, within PLE it is possible to prove the existence
of mathematical objects without being able to construct them or indicate a secure
method finding them. PLE is in direct contrast to the Principle of Constructive
Existence (PCE). According to it,

A mathematical object exists iff it has been constructed with an accepted constructed
method29.

In symbols,
∃coxP (x) ≡ K(x)P (x),

where K(x) denotes an accepted construction of the object x, within a constructive
theory TK . Since K(x) depends on the TK , it would be more accurate to talk about
constructive existence within a certain constructive theory TK . A major part of our
study is to clarify K(x) within Brouwer’s Intuitionistic Analysis (BIA), a modern con-
structive theory of the mathematical continuum.
Of course, a non-constructive theory T , which uses PLE, may also use constructive
methods allowing constructive proofs of existence. If K(x) is within any kind of theory,
then

∃coxP (x)⇒ ∃loxP (x),

but not conversely. The logical existence of the infinite branch of König’s lemma in no
way implies a method of its construction. On the contrary, it seems impossible to find a
way to construct it. If we follow the evolution of the fan from the root we check all finite

28We actually give this proof in the characterization of compact sets of N (See the Appendix,
Proposition A.6).

29It is non-trivial to say which constructive method is the right one. A classical example from
antiquity is the use of neusis in geometric constructions. Neusis, as a constructive method, is stronger
than line and circle but its use was doubted from the beginning (see [Bos 2001]).
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nodes of each one level. Some of these nodes may end, and some of them necessarily
continue to grow, since otherwise the root would be a bad point. The logically existed
infinite branch is an infinite extension of one of these growing nodes, but we cannot
tell of which one. In Paragraph 13 we show that König’s lemma is unacceptable within
BIA, although we cannot show that it is false within BIA30. In general, we cannot show
the negation of the inverse of ∃coxP (x)⇒ ∃loxP (x) i.e.,

¬¬[∃loxP (x)⇒ ∃coxP (x)].

PLE presupposes an abstract world W of mathematical objects, which is consistent and
the Principle of the Excluded Middle is true in it. Since

∃xP (x) ∨ ¬∃xP (x),

the proof of ¬¬∃xP (x), i.e., of ¬∃xP (x)⇒ ⊥, entails that ∃xP (x) in W . I.e., in W

PEM ⇒ PLE.

Brouwer is famous for his disbelief to PEM and his non-classical interpretation of logical
connectives. If u is a node of a fan F , then classically

G(u) ∨ ¬G(u)

is true, but intuitionistically we must be able to say which one of the disjuncts is actu-
ally true, something which is, in general, impossible31.
To a constructivist like Brouwer logical existence conveys all the epistemological prob-
lems of world W . Since it cannot be adequately explained how the human mind is
connected to W and PEM in W , PLE is not sufficient to guarantee the actual existence
of a mathematical object.
It is important to stress here that K(x) is far more complicated enterprize from just
defining x. As we have already seen in the proof of Proposition 2.2, the definition of
Ω(u) is not constructive, since there is no general method constructing even a single el-
ement of Ω(u). A definition of a mathematical concept is at first a linguistic expression
without a genuine mathematical meaning, unless an appropriate construction accom-
panies it.
Logical existence within a non-constructive theory T though, is not without value to a
constructive theory TK with analogous objects to T . Logical existence of an object x
may serve as a guide to find a constructive proof of it.
In antiquity all existence proof were, roughly, constructive and until the end of 19th
century constructive spirit was still alive. It is no strange that Bolyai tried to give
a geometric line and circle construction of the limiting parallel in order to justify the
new concept32. It was because of the alive constructive spirit of the 19th century that
Gordan said “Das ist nicht Mathematik, das ist Theologie”, regarding Hilbert’s non-
constructive proof of basis theorem33. This remark forced Hilbert to find a constructive
proof of it. Bishop though, in [Bishop 1968] pp.55-56, remarks:

30In recursive analysis, where all sets must be recursively defined it can be shown that KL is false
(see e.g., [Beeson 1985] p.68).

31See also on that [van Atten 2004] p.63 and [Dummett 2000] pp.49-51.
32The problematic character of Bolyai’s construction is discussed in [Hartshorne 2000] pp.396-398

and in [Petrakis 2008].
33If R is a Noetherian ring, then R[X] also is (see e.g., [Kendig 1977] pp.118-121) for a classical

proof.
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[Recently I was asked whether the Hilbert basis theorem ... is constructively
valid. The answer is easily seen to be ‘yes’. Unfortunately, not even the ring
of integers is Noetherian from the constructive point of view (and therefore
the Hilbert basis theorem is vacuous). For a counterexample in the style
of Brouwer, let {nk} be a sequence of integers, for which we are in doubt
as to whether they are all equal to 0. The ideal generated by the integers
nk has no finite basis in the constructive sense. The problem is to find a
constructively usable reformulation of the definition of a Noetherian ring,
which would include the integers and give constructive substance to the
Hilbert basis theorem.]

Even if Hilbert was not the first to give a non-constructive proof, he was a major propo-
nent of the non-constructive spirit, especially in his early period. Although Kronecker,
who in general influenced Hilbert34, believed that existential propositions are meaning-
less if they do not explicitly specify the object the existence of which they ascertain,
Hilbert saw in the negation of PLE a major shrink of mathematics. Providing a con-
structive proof of his previously non-constructively proven basis theorem, he revealed
the importance of PLE, since the object that had to be constructed was already proven
to “exist”. Even Gordan admitted that “theology” had its merits. Of course, as we
can already suspect from König’s lemma case, this cannot be done with every non-
constructively proven theorem.
An advantage of the use of PLE was the at least quantitative development of mathe-
matics, permitting the introduction and use of objects that was hard or impossible to
construct. The marginalization of constructivism though, begun quite earlier. E.g., the
algebraic determination of a curve through its equation, which replaced the sometimes
hard to find geometric construction of it begun in the 17th century (see [Bos 1993]).
Though this change of point of view gave a new impetus to the study of curves, it
had a serious philosophical cost. The curve by being equated to its equation stopped
being a truly continuous object demanding an appropriate construction. Gradually,
the discrete approach to continuous objects (we may know as many as possible discrete
points of a curve and within Infinitesimal Calculus how it, roughly, looks) replaced the
geometric construction of a curve as certain foundation of our knowledge of it. Finally,
the answer to the question of mathematical existence became of non-constructive char-
acter. In that way problems could be also solved easier.
Though Brouwer was completely against mathematics with PLE, it is worth remarking
that by

¬∃loxP (x)⇒ ¬∃coxP (x),

the proof of logical non-existence implies constructive non-existence. In that way con-
structively acceptable results of logical non-existence can be incorporated to a TK .
There are two major, classical questions on the philosophy of mathematics.

The ontological question on mathematical objects(OQM): Which is the nature
of mathematical objects?

The epistemological question on mathematical objects (EQM): How do we
know mathematical objects?

The tradition of constructive mathematical existence is connected to a fundamental

34See Hilbert’s obituary by Weyl in [Weyl 1944].
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principle, which, though not explicitly expressed, was on the ground of mathematical
practice for many centuries. It is the fundamental principle of a geometric constructive
framework G, the basic principles of which we present in [Petrakis 2010].

Fundamental Principle of G (FPG): Mathematical objects, except some initial men-
tal intuitions, are constructions of the human mind, based on these initial intuitions.

For centuries mathematical objects were to mathematicians (and philosophers e.g., like
Kant) creations of the human mind based on certain mind intuitions. The only way
then that a non-fundamental object exists is to be constructed appropriately by the
fundamental intuitions. FPG answers simultaneously both major questions. Mathe-
matical objects are mental intuitions, fundamental or not, and we know them because
there are part of our mind (fundamental intuitions) or because we construct them (non-
fundamental objects) by the fundamental ones. Therefore constructive existence is a
result of the nature of mathematical objects i.e.,

FPG ⇒ ∃co(x)P (x).

The “discovery” of non-Euclidean geometries, which undermined our faith to the fun-
damental intuition of space and the parallel arithmetization of analysis turned mathe-
maticians away from FPG. Gradually, the OQM was answered through W within which
EQM is completely neglected. The only problem left was the consistency of W (early
formalism of Hilbert).
In such a foundational atmosphere Brouwer, although influenced by it, built a bridge
with traditional constructivism.

Brouwer’s early Fundamental Principle (BFP1) is exactly the same to FPG. In
his late period he used a variation of it, BFP2, according to which, mathematical ob-
jects, except some initial mental intuitions, are constructions of the human mind of the
ideal mathematician, based on these initial intuitions.

The concept of the mind of the ideal mathematician, a mathematical subject of great
mathematical memory and patience, is an idea of Brouwer’s mature period. In his early
period his fundamental principle is an independent rediscovery of FPG. Already in his
dissertation35 he claims that:

[... to exist in mathematics means to have been constructed by intuition.]

Although Brouwer deviated from G in the nature of the fundamental intuitions, his
idea that mathematics is the constructive product of some fundamental intuitions is
crucial to the development of his reconstruction of mathematics.
The whole third chapter of his dissertation is dedicated to the unacceptability of all
mathematical objects built independently from intuition ([Brouwer 1907], p.52). With
his critique on the axiomatic foundation of mathematics, on Cantor’s theory of transfi-
nite numbers, on Peano-Russell’s logicism and mainly on Hilbert’s early formalism, he
tried to explain why the only possible real foundation of mathematics was within his
fundamental principle. Even the set-theoretical paradoxes of that period are treated
by Brouwer as symptoms of the deviation of set theory from his fundamental principle
and its consequences.

35[Brouwer 1907] p.96.
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Even if W was proven consistent, PLE had to be denied ([Brouwer 1907] p.79), and
PCE had to be accepted as a direct consequence of BFP1. I.e.,

BFP1 ⇒ ∃co(x)P (x).

Intuitionistically, a non-fundamental mathematical object is a legitimate mental con-
struction, therefore, in order to show its existence, we must show its construction. In
that way, both in G and BIA, the ontology and epistemology of mathematical objects
are identified. We show the existence of a non-fundamental object by showing how we
know it.
Brouwer was not the only one with such foundational views. Weyl in “Das Kontinuum”
holds similar to Brouwer views on the relation between language and genuine mathe-
matics and on the foundational use of the axiomatic method. Hilbert’s early axiomatic
method was also criticized by Frege and Poincaré. It was only Brouwer though, who
developed the mathematical consequences of his fundamental principle and insisted on
it. In our days both FPG or BFP1, and BFP2 are unpopular.

4. The Second Act of Intuitionism: choice sequences, creating subject and
species. According to Brouwer (who echoes Kant), the natural numbers are certain
mental constructions founded on the primordial intuition of time. This philosophical
stand of Brouwer is called the First Act of Intuitionism (FAI)36. Brouwer founded the
natural numbers on the intuition of time two-ity, a pair of time moments, and defined
rational numbers by naturals in a classical way. All expected properties hold for intu-
itionistic rationals.
While FAI determined the discrete intuition of time as a foundational basis (see [Brouwer
1907]), the Second Act of Intuitionism (SAI) (formulated for the first time in 1918)
determined the ways by which new objects are constructed by already existed or con-
structed ones, in order to built BIA. According to Brouwer’s own words ([Brouwer 1952]
p.142),

[The second act of intuitionism recognizes the possibility of generating new
mathematical entities:

firstly in the form of infinitely proceeding sequences p1, p2, ..., whose
terms are chosen more or less freely from mathematical entities previously
acquired ; in such a way that the freedom of choice existing perhaps for the
first element p1 may be subjected to a lasting restriction at some following
pν , and again to sharper lasting restrictions or even abolition at further
subsequent pν ’s, while all these restricting interventions, as well the choices
of pν ’s themselves, at any stage may be made to depend on future mathe-
matical experiences of the creating subject ;

secondly in the form of mathematical species, i.e. properties supposable
for mathematical entities previously acquired, and satisfying the condition
that, if they hold for a certain mathematical entity, they also hold for all
mathematical entities which have been defined to be equal to it, relations
of equality have to be symmetric, reflexive and transitive; mathematical

36For the mental construction corresponding to a natural number and the derivation of Peano “ax-
ioms” by this construction see [Petrakis 2007].
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entities previously acquired for which the property holds are called elements
of the species.]

Within SAI, Brouwer explains how new objects are constructed from old ones, in a way
similar to that of Euclid’s postulates, which determine all constructions of geometric
objects.
SAI is highly non-trivial, since through it Brouwer transcends the reduced continuum
R, in which all points are defined through a law-like Cauchy sequence of rationals,
therefore R is countable, and creates full intuitionistic continuum, which is not count-
able.
Brouwer believed that classical continuum is not a legitimate object, but only a linguis-
tic expression, in contrast to the intuitionistic continuum.
We intend in the following paragraphs to clarify these facts.
The first constructive mechanism in BIA is “sequencation”, i.e., an infinitely proceeding
sequence of already existed objects p1, p2, ..., is a new object (p1, p2, ...). In symbols,

p1, p2, ... ↪→ (p1, p2, ...)

What is new in this construction principle is that an incomplete, not necessarily pre-
determined object like p1, p2, ..., is accepted as a “genuine” object. Since p1, p2, ..., is
not predetermined it is called a choice sequence. The term “choice” sequence will be
understood through the concept of spread, the Brouwerian concept which houses choice
sequences.
The incompleteness in our knowledge of a choice sequence α, since α is ever growing
without knowing exactly how it grows, makes α difficult to accept. But Brouwer in-
sisted on its use and the reason for that will be clear only after showing the merits of
the spread concept. Choice sequences are not accepted neither in classical mathematics
nor in other constructive theories37.
Borel introduced choice sequences in a lecture of 1908 (see [Borel 1909]) attended by
Brouwer. There he discusses the possibility the uncountability of choice sequences to
count for continuum, but denies choice sequences as legitimate objects. In 1912 Borel
writes38:

[People will also agree on the following point: it is possible to define a
decimal number of bounded length by asking thousand people to write down,
arbitrarily, some digit; thus one obtains a well-defined number, if all the
persons are arranged in a row, and each one writes in turn a new digit at
the end of the sequence of the digits already written by the people in the row
preceding him. But observe where the disagreement sets in: it is possible
to define a decimal number of unbounded length by a similar process?...

On my part, I regard it as possible to ask questions of probability concerning
decimal numbers obtained in this way, by choosing digits, either entirely
arbitrarily, or imposing some restrictions which leave some arbitrariness,
but I regard it as impossible to talk about a single individual such number,

37In Russian constructivism of Markov sequences are only defined recursively, while in Bishop math-
ematics choice sequences are dismissed, making mathematics “so bizarre it becomes unpalatable to
mathematicians” (see [Bishop 1967] p.6).

38See [Borel 1912].
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since if one denotes such a number by a, different mathematicians, in talking
about a, will never be sure to be talking about the same number.]

Borel didn’t accept choice sequences because equality of choice sequences is undecidable.
It is impossible, in general, to find a method that decides in finite time if two choice
sequences are equal. Weyl, who followed in early twenties Brouwer’s views couldn’t
accept choice sequences as genuine objects for the same reason. Brouwer, who followed
at the beginning Borel’s view, changed his mind and by 1914 onwards he gave to choice
sequences an object status.
Until then, the only concept of sequence was that of a law-like sequence, given by a
certain rule f which determines all elements f(1), f(2), ..., f(n), ..., of the sequence, or
that of an abstract sequence, which belongs to the external to mind mathematical world
W and it is, therefore, independent from our knowledge of it.
Although Brouwer didn’t have a single concept of choice sequence in his mind through-
out his life39, he worked mainly with choice sequences within a spread. As we explain in
Paragraph 5, a spread is a kind of a non-deterministic rule, with the help of which the
creating subject (CS) selects the terms of choice sequences. CS is Brouwer’s mature
addition to his early fundamental principle BFP1. I.e.,

Brouwer’s mature Fundamental Principle (BFP2): Mathematical objects, except
some initial mental intuitions, are constructions of the creating subject, based on these
initial intuitions of his.

Hence, mathematics is the mathematical activity of an idealized human mind, having:

(i) Perfect memory, so that he remembers all of his past actions,
(ii) Great patience, so that he is engaged in ω-procedures, something which a normal
person never considers.
(iii) Will to interfere in a mathematical procedure. Since mathematics is CS’s activity
by definition, CS choses one object among others and may decide to stop or wait until
some condition is satisfied.
(iv) Knowledge or ignorance on certain mathematical questions, which CS may in-
corporate to his mathematical activity.
(v) Grasp of all fundamental intuitions, on which mathematical activity is based.
(vi) No special features i.e., what a CS does can be done by any CS.

Idealizations (i) and (ii) are of quantitative character only, while properties (iii) and (iv)
are related to CS’s “situation”. Will, knowledge or ignorance, are human properties
that are found for the first time in a mathematical theory. Their introduction seems
at first peculiar, but if we take BFP2 seriously, then the use of properties (iii) and (iv)
makes sense.
CS is present, directly or not, in fundamental intuitionistic notions. Natural numbers,
spread choice sequences and intuitionistic functions reflect constantly the presence of
CS.
The main characteristic of spread choice sequences is that they are incomplete, ever
growing sequences, therefore their equality is undecidable. A choice sequence is a ma-
jor example of an on-going mathematical object, which is formed by CS in time (in

39For the different kinds of choice sequences in Brouwer’s work see [Troelstra 1981]. There is also
a letter of Brouwer to Heyting mentioning lawless sequences, which are completely independent from
any kind of law. Lawless sequences were later introduced by Kreisel for metamathematical purposes.
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compatibility to FAI, where discrete time intuition is the fundamental intuition).
Creation of a choice sequence in time means creation in CS’s subjective (personal) time.
Since an ω-procedure is the model of an on-going procedure in time, and since these
procedures do not reflect characteristics of a special CS, it is safe to say that construc-
tion in time of a spread choice sequence is objective i.e., independent from any special
CS. This situation is repeated throughout BIA, so that property (vi) of a CS is satisfied.
Since the concept of choice sequence that we study here depends on the notion of spread,
we postpone its further analysis until the introduction of spreads in next paragraph.

The second mechanism of generation of new objects from old is that of species.

Standard description of species: A species E of already constructed objects is a
property defined on them.

Since E is a property on already existed objects impredicative definitions are avoided40.
The order of a species is defined inductively as follows:

(i) Mathematical objects, like natural numbers, spread choice-sequences, are species of
order 0.
(ii) If the already constructed objects on which E is applied are of order n, then E is
a mathematical object of order n+ 1.

In that way a hierarchy analogous to the hierarchy of sets in type theory is formed41.
A species of already constructed objects is a new object which is considered legitimate
from the intuitionistic point of view. The central question on species is:

Why defining a property E on already constructed objects is enough to accept E con-
structively?

Although we have not defined yet any species, it is interesting to see what has been
said on the central question of species.
Although species belong to Brouwer’s mature period, we find a constructive approach
on the notion of mathematical property already in [Brouwer 1907] p.52:

[Often is quite simple to construct inside such a structure, independently of
how it originated, new structures, as the elements of which we take elements
of the original structure or systems of these, arranged in a new way, but
bearing in mind their original arrangement. The so called ‘properties’ of a
system express the possibility of constructing such new systems having a
certain connection with the given system.]

Quotes as the above made van Stigt (in [van Stigt 1990] p.337) and van Atten (in [van
Atten 2004] p.6) to answer the central question on species through the intuition of two-
ity. According to van Atten, the already constructed objects α on which E is referred
to and the already constructed objects α which actually satisfy E form a pair, the

40A circular or impredicative definition of an object a is one in which a totality A, such that a ∈ A, is
used in it. E.g., if the set of naturals is defined as the intersection of all inductive subsets of reals, while
naturals belong to the totality of all inductive subsets. Within W circular definitions are accepted, but
that is not the case outside W . Poincaré was critical on a crucial circular definition in Zermelo’s proof
of well-orderability of any set and Russell created type theory in order to avoid circular definitions
([Russell, Whitehead 1910]). Weyl developed predicative mathematics in “Das Kontinuum” (see [Weyl
1918]) and [Feferman 1997b]).

41In mid-twenties Brouwer elaborated a more detailed hierarchy of species, which abandoned after
the war (see [van Stigt 1990] pp.340-345).
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components of which are connected through E. E “holds together” these two distinct
systems, a reflection of the initial intuition of two-ity. The CS separates from objects α
those which satisfy E and this is a new construction, a new object and at the same time
connected to the initial system of objects α. In that way the construction of species is
an expression of the unfolding of the initial intuition of two-ity.
Brouwer himself believes that too42, although he didn’t answer explicitly the central
question on species. Generally, he believed that SAI is compatible to FAI, since choice
sequence and species are reflections of time two-ity, although this reflection in the case
of species is quite mysterious. Brouwer himself claimed43 that consideration of the
isolated structure (those α which satisfy E) and the hypothesis of it being part of other
constructed entities (those already constructed α on which E is applicable) is a distinct
constructive device, a new mathematical entity.
This more or less common “explanation” is not at all persuasive, since in that way all
classical properties, only defined on pre-existed objects, are also acceptable and there is
no real boundary between classical and intuitionistic properties. As we show in [Petrakis
2010], the analysis of the notion of species is the most crucial in a reconstruction of
BIA and the question of the genesis of species needs to be revisited.

Classically, properties define sets. According to Frege’s Comprehension Principle, if P
is a property, such that P (x) is true or not (without being necessarily decidable), then
there is a set X, such that

X = {x|P (x)}

i.e.,
x ∈ X ⇔ P (x)

By extensionality axiom

A = B ⇔ (∀x)[x ∈ A⇔ x ∈ B],

X is unique and it is called the extension of P , denoted as (P )44. Through the famous
Russell’s property P (x) ≡ x is a set and x /∈ x, we get for the extension (P ) of it and
Russell’s paradox

(P ) ∈ (P )⇔ (P ) /∈ (P ),

showing the inadequacy of Frege’s principle, which turned into Zermelo’s separation
axiom45. According to it, if A is a set and P a property on elements of A, there exists
the set X, where

X = {x|x ∈ A ∧ P (x)}

and obviously
x ∈ X ⇔ [x ∈ A ∧ P (x)].

42See [van Stigt 1990] p.337.
43In [Brouwer 1947] p.339 and in [Brouwer 1954] p.2.
44Frege studied only sets which are extensions of properties, something which is not the case in

axiomatic set theory, where there are sets, like the infinite set determined by the infinity axiom, which
are not extensions of properties.

45Zermelo, who had found Russell’s paradox even earlier than Russell, was that period in Göttingen
and was aware of Hilbert’s ideas on the value of the axiomatic method.
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By extensionality X is unique. Although separation axiom is a restriction of Frege’s
comprehension principle, through which Russell’s paradox is avoided46, it is not ex-
plained why this, and not Frege’s comprehension principle, captures the meaning of the
concept of set.
Brouwer, even from the beginning, treats all set-theoretic paradoxes as consequences
of the linguistic approach to the concept of set47 and denies the separation axiom. In
1919 he writes48:

[The axiom of Comprehension-on the basis of which all things which have a
certain property unite into a set (even in the later, modified version given
by Zermelo)-is inadmissible and useless; a legitimate basis of mathematics
can only be found in a constructive definition of set.]

So, a direct response of Brouwer to the central question of species is that there is
some kind of construction associated to the definition of a property E on some already
constructed objects. For Brouwer the extensions (P ) of properties P are linguistic only
objects of the external to us world W . Therefore, they are not accompanied, generally,
by some mental procedure which guarantees their understanding.
In order that SAI is compatible to FAI, there must be something more in the standard
description of species. In [Brouwer 1925] we find an additional element in Brouwer’s
description of species which separates species from classical properties49.

Brouwer’s normative description of species: A species E of already constructed
objects is a property defined on them, which is conceptually completed.

van Stigt also remarks50:

[In the Brouwerian universe of mathematics (property) can only be a con-
struction, and this is the interpretation given in [Brouwer 1907, 1908, 1923],
where property is a ‘construction’ or a ‘system’.]

An intuitionistic property is actually a pair (E,K(E)), where E is the formulated prop-
erty and K(E) is a construction which accompanies the formulation of E. K(E) is the
conceptual completion of property E, the element of difference between classical and
intuitionistic property, the additional element to the standard description of species.
Unfortunately, Brouwer’s references to K(E) are scarce and, although it is logically
necessary, it is not found in the related literarure51.

46Russell’s paradox is avoided as follows: If P is the Russell property, then

(P ) = {x|x ∈ A ∧ x /∈ x},

therefore, since
(P ) ∈ (P )⇔ (P ) ∈ A ∧ (P ) /∈ (P ),

we simply infer that (P ) /∈ A. We also conclude that for each set A there is a set, (P ), which is not in
A, hence, there is no such thing as the set of all sets.

47See [Brouwer 1907] p.89.
48See [van Stigt 1990] p. 336.
49It is through this additional element that Heyting’s or Weyl’s criticism on the concept of species

can be confronted.
50In [van Stigt 1990] p.336.
51Exceptions are some references of van Stigt in [van Stigt 1990] and his stress of Brouwer’s con-

structive understanding of a property in an introductory text of his in [Mancosu 1998] pp.13-14.
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In favor of this constructive interpretation of species we add the fact that Brouwer
defines species of species (see in the next paragraph the definition of reals). Even by
the standard interpretation, the initial species must be already constructed, therefore a
construction of those species is presupposed.
While the standard interpretation of species is connected to a classical linguistic ap-
proach on properties, Brouwer’s normative interpretation is in harmony, at least pro-
grammatically, with the rest of intuitionism. As in traditional constructivism, in which
concepts are not only defined but also constructed, in BIA construction of concepts is
reinvented.
Two species differently defined A,B are called equal, A ≈ B, iff x ∈ A⇔ x ∈ B i.e., iff
they are extensionally only equal.
In the rest of our thesis we present all major examples of Brouwerian species. Through
them the character of K(E) will be explored. The question whether species fall under
Brouwer’s normative description will not be addressed here52.

5. Spreads and fans. The concept of spread is Brouwer’s invention to represent the
mathematical continuum, a fundamental intuition in early intuitionism. In Heyting’s
words53:

[From 1918 on Brouwer no longer mentions the continuum as a primitive
notion. He can do without it because the spread ... represents it completely,
as far as its mathematical properties go.]

A spread is a determined through two laws:

(A) the spread law Λ, which decides if a finite sequence of natural numbers is accepted
or not. Λ distinguishes between accepted and unaccepted finite sequences as follows:
(i) It decides which 1-sequences (of length 1) are accepted.
(ii) If (α1, α2, ..., αk, αk+1) is accepted, then (α1, α2, ..., αk) is also accepted.
(iii) If (α1, α2, ..., αk) is accepted, it decides if some sequence (α1, α2, ..., αk,m) is ac-
cepted or not.
(iv) If (α1, α2, ..., αk) is accepted, then there is a natural number m, such that the suc-
cessor sequence (α1, α2, ..., αk,m) is accepted.

Thus, ΛM determines a tree with its branches corresponding to the admissible by ΛM

finite sequences or nodes of M54. Actually, properties (i)-(iii) determine an intuitionis-
tic tree. By (iv), all paths of the tree are potentially infinite and they are called (naked)
choice sequences of the spread M . A spread M can be seen as an intuitionistic pruned
tree.

(B) the complementary spread law Γ, which corresponds to any ΛM -accepted se-
quence an already constructed mathematical object. So, if (α1, α2, ..., αk, ...) is an M -
(choice) sequence, then by the following correspondences of ΓM

(α1) 7→ β1

(α1, α2) 7→ β2

. . . . . . . . . . .

52See [Petrakis 2010] for details.
53In [Heyting 1974] p.84.
54The above definition does not specify the nature of ΛM , only its function. This is not a problem,

since BIA uses certain spreads and it is independent from a general theory of spreads.
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. . . . . . . . . . .
(α1, α2, ..., αk) 7→ βk
. . . . . . . . . . .

an M -sequence of mathematical objects, not necessarily naturals, is constructed. Each
M -sequence (β1, β2, ..., βk, ...) is an infinitely proceeding sequence (i.p.s), of which we
know at any moment only a finite initial segment i.e., an M -sequence is an on-going
mathematical object, which is also referred to as choice sequence of M . The empty
sequence is the root <> of the tree M . A spread M without a complementary spread
law is called naked.

Hence, a spread choice sequence is completely different from a classical sequence, which
is a complete object under the umbrella of classically accepted absolute infinity55.
Within the use of potential infinity only, a sequence given by some law f(n) is a com-
pletely given object, since we can find any term of it, independently from the others.
I.e., f is not constructed in time. On the contrary, a recursively given law for a sequence
can be interpreted as an object constructed in time.
A spread choice sequence is by definition constructed in time56. Hence, a classical se-
quence within absolute infinite framework is completely different object than spread
choice sequence and this difference reflects all major fundamental differences between
BIA and classical analysis.
A major example of a species is the species [M ] of M -choice sequences (naked or not),
which corresponds to the classical (set) body of a tree M . Due to SAI an M -choice se-
quence α is a legitimate mathematical object within BIA. The generation of the species
[M ] is similar to the species of natural numbers ω. ΛM , like ω, embodies a common
mechanism of construction of certain mathematical objects, rather than a property
defined on pre-existed objects, since M -choice sequences are not already constructed
but under on-going construction. Both [M ] and ω can be considered as fundamental
species which correspond to a common mode of formation of mathematical objects.
So, [M ] is not a set but a mechanism of construction of sequences and its conceptual
completeness derives from the conceptual completeness of ΛM . We say that a (naked)
M -sequence belongs to [M ] iff each initial segment of α is ΛM -accepted, i.e.,

α ∈ [M ]⇔ ∀n , nα is ΛM -accepted,

but we actually mean that α falls under the construction mechanism of ΛM .
Of course, the expression “∀n, nα is ΛM -accepted” is understood within the potential
infinity framework. If α is an infinitely proceeding sequence generated, in general,
independently from the spread M (i.e., in our study generated by some other spread
N), then the question α ∈ [M ] is not decidable, since it is needed infinite time to check
if all initial segments of α are M -accepted.
Two infinitely proceeding sequences (α1, α2, ...., ) and (β1, β2, ...., ) are called equal iff
αn = βn for each n, and positively distinct iff a natural number s can be indicated such
that αs 6= βs.
The expression α /∈M , means intuitionistically that

α ∈M → ⊥.
55Classically, a sequence f : N→ X of elements of X is the absolutely infinite set of pairs (n, f(n)).
56As we have already said in Paragraph 5, there are post-Brouwer concepts of choice sequence

independently from a spread (see [Troelstra 1977] and [Troelstra, van Dalen 1988b] Ch.12), which can
not be generated though, by a common mechanism like spread choice sequences.
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Although the question if a node u is ΛM -accepted or not is decidable, there is no positive
description of the fact α /∈M . I.e., intuitionistically

α /∈M ⇒ ∃nα such that nα is not ΛM -accepted

is not generally true. To accept the existence of such an n is non-trivial and it is related
to the non-acceptance of Markov’s principle from the intuitionistic point of view.

Examples of spreads:

(I) If ΛM accepts no natural number as an 1-sequence, then there is no M -node nor
M -sequence and M is called the empty spread.
(II) If ΛM accepts a fixed natural number n at each step, then [M ] = n, and M is the
spread of the stagnant sequence n.
(III) If ΛM admits any finite sequence of naturals, then M is the universal spread, the
body of which is denoted by ωω and corresponds to the classical Baire space N of all
sequences of naturals. But intuitionistic ωω is not a set, only a species generated by a
mechanism of construction of i.p.s.

The notion of spread is one of Brouwer’s most important conceptual innovations, since
it holds together all the M -sequences, without containing them as a set. The spread
concept derives from Brouwer’s need to avoid the concept of absolutely infinite set.

(IV) The most important spread is the spread of real numbers <Br. If we define the
rational numbers in the classical way, and fix an enumeration q1, q2, ..., qn, ... of them,
then Λ<Br :
(i) accepts any natural number as a successor of the root <>.
(ii) accepts (α1, α2, ..., αn), if it accepts (α1, α2, ..., αn, αn+1).
(iii) accepts (α1, α2, ..., αn, αn+1) iff it accepts (α1, α2, ..., αn) and

| qαn − qαn+1 |<
1

2n+1

Γ<Br is defined by
(α1, α2, ..., αn) 7→ qαn .

Λ<Br guarantees the extension of any Λ<Br -admitted sequence (α1, α2, ..., αn), since
there always exists rational q such that,

qαn −
1

2n+1
< q < qαn +

1

2n+1
.

But q is a qk, for some k, so (α1, α2, ..., αn, k) is Λ<-admitted. Of course, this q is
not unique, so the extension of (α1, α2, ..., αn) is not absolutely determined by Λ<Br .
So, ΛM is, generally, a non absolutely deterministic law. Through Γ<Br the sequence
(qα1 , qα2 , ..., qαn , ...) determines an intuitionistic real number.
Two real numbers α, β are equal, α ≈ β if the following condition is satisfied:

α ≈ β ⇔ |qα(n) − qβ(n)| <
1

2n−1
, ∀n ∈ ω.

Therefore, (qα1 , qα2 , ..., qαn , ...) is a representative of an intuitionistic real number, which
is actually the species of real numbers equal to a representative. I.e., the intuitionistic
continuum is the species of the species of real numbers i.e., it is a species of second
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order. By that way, the intuitionistic continuum is a holistic continuum which gener-
ates its points, while the classical continuum is an atomistic continuum generated by
its points as their sum (set).
This seemingly strange way to introduce a concept of a set of sequences is justified
by Brouwer’s need to avoid interpreting the intuitionistic set as a set-box. Choice se-
quences do not belong to a set, only the spread law holds them together. That’s why
Brouwer replaced his initial term “Menge” (i.e., set in German) by the new term “sprei-
ding”, in English spread, in his 1927 notes. The first books on intuitionism respected
the above careful distinctions of terms (see e.g., [Heyting 1966], and less [Beth 1959]),
while later presentations use the standard set-theoretical terminology (see e.g., [Troel-
stra, van Dalen 1988], or [Bridges, Richman 1987]). As Heyting remarks57:

[A spread is not the sum of its elements (this statement is meaningless
unless spreads are regarded as existing in themselves). Rather, a spread is
identified with its defining rules.]

Note that spread generates new objects, while species hold together already constructed
ones.
An equivalent description of the unit interval of intuitionistic real numbers is the fol-
lowing spread.

(V) Let n, k are natural numbers and ∆n,k is the following closed interval of rational
numbers:

∆n,k = [
n

2k+1
,
n+ 2

2k+1
],

where 2 ≤ n+ 2 ≤ 2k+1, hence, 2
2k+1 ≤ n+2

2k+1 ≤ 2k+1

2k+1 i.e.,

1

2k
≤ n+ 2

2k+1
≤ 1.

The left end of ∆n,k,
n

2k+1 is ≥ 0, and it is 0, only if n = 0. The right end of ∆n,k,
n+2
2k+1 ,

is ≤ 1 and it is 1, only if n = 2(2k − 1).
Intervals ∆n,k are obviously countable and let ∆1,∆2, ...,∆n, ..., a fixed enumeration of
them. We define the spread ∆[0, 1] through the spread law Λ∆[0,1]:

(i) Each 1-sequence is accepted.
(ii) (α1, α2, ..., αn, αn+1) is Λ∆[0,1]-extension of the Λ∆[0,1]-accepted sequence (α1, α2, ..., αn)
iff

∆αn+1 ≺ ∆αn ,

i.e., interval ∆αn+1 is a subspecies of ∆αn .
The complementary law Γ∆[0,1] is the following:

Γ∆[0,1] : (α1, α2, ..., αn) 7→ ∆αn .

The choice sequences of the spread ∆[0, 1] is the intuitionistic interval [0, 1], and if we
define ∆n,k such that 2α ≤ n+ 2 ≤ β2k+1 we would determine ∆[α, β], the intuition-
istic closed interval [α, β]. In that way an intuitionistic real number is described as
a sequence of nested intervals of rational numbers.

57In [Heyting 1931].
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In the definition of the spread of reals a representative (qα1 , qα2 , ..., qαn , ...) of an intu-
itionistic real number is actually a Cauchy sequence of rationals. But the intuitionistic
continuum is not the “collection” of all law-like given Cauchy sequences of rationals.
This is, roughly, the continuum of French semi-intuitionists Borel and Lebesgue, which
is countable, since there are only countable laws determining a sequence and it is known
as the reduced continuum. Such a collection though, is not an intuitionistic object,
since there is no simple way to construct the concept of a law-like sequence. The ex-
pression “the set of all law-like given Cauchy sequences of rationals” is, according even
to Brouwer’s early period, just a linguistic expression. So, what matters from the intu-
itionistic point of view is the concept of real number generator, which is an element or
a point of the body of <. It was through the concept of spread that mature Brouwer
found the way to refer to the continuum as a totality, without using the pathological
concept of set.
A real number generator is an intuitionistic Cauchy sequence (qn) of rational num-
bers i.e., for each natural k a natural n0 can be found such that |qn− qm| < 1

k
, for each

n,m ≥ n0. Someone could argue that intuitionistic points are just like points of the
classical continuum. Next proposition says that this is not the case.

Proposition 5.1: There is a classical Cauchy sequence, which cannot be accepted as
an intuitionistic Cauchy sequence i.e., as a real number generator.

Proof: Following [Dummett 2000] p.26, let (qn) be defined by

qn =

{
1 , if 2n+ 1 is the first perfect odd number
2−n , otherwise

Until now we do not know if there is a perfect odd number (i.e., the sum of its divisors
equals its double). Classically, if there is such a perfect odd number, then (qn) is finally
2−n, while if there is no such number, then (qn) equals 2−n. In both cases (qn) is a
Cauchy sequence.
Intuitionistically though, if (qn) was a real number generator, we would have found a
natural number n1 such that |qm− qn1| < 1

2
, for each m ≥ n1. But then, no qm could be

1, since |1− 2−n1| > 1
2

i.e., we would know that there is no perfect odd number, which
contradicts our lack of this knowledge.�
Spreads behave differently from species with respect to intersection or complement
operation. Beth (in [Beth 1959] p.425) says that these limitations of spreads made
Brouwer to introduce the closer to classical set concept of species. But, in our view,
this is not the case and the concept of species is not close at all to the classical set.
If M1 and M2 are spreads, then the spread M1 ∨M2 is easy to define, while M1 ∧M2

or M ′ are not.
If ΛM1 and ΛM2 are the respective spread laws we could define the following law ΛM :

(i) If (α0, α1, ..., αk) ΛM1-accepted, then ΛM1 is applied.
(ii) If (α0, α1, ..., αk) ΛM2-accepted, then ΛM2 is applied.
Therefore, if (α0, α1, ..., αk) ΛM1 , ΛM2-accepted, then both ΛM1 and ΛM2 are applied.

It is possible though, that a node (α0, α1, ..., αk), is ΛM1 and ΛM2-accepted, while no
extension of it is also ΛM1 and ΛM2-accepted. Hence, this node cannot be extended as
the definition of a spread demands.
Brouwer (in [Brouwer 1923], p.337 of the English translation) uses a fleeing property

34



to define later two spreads the intersection of which cannot be a spread. A fleeing
property (fliehende Eigenschaft) is a property, e.g., on natural numbers, A(n), for
which the following hold:

(i) (∀n)(A(n) ∨ ¬A(n)).
(ii) We cannot neither prove ∃nA(n) nor (∀n)¬A(n).

I.e., while we do not find n, such that A(n), a proof of (∀n)¬A(n) escapes. E.g., consider
A(n) to be

A(n): the first n elements of the decimal expansion of π contain the sequence
01234567890123456789.

Brouwer (see [van Stigt 1990] p.346) defines M1 as the spread generating only the zero
sequence 0 and M2 generating only one sequence by the following law:

α(n) =

{
1 , if A(n)
0 , if ¬A(n)

If the intersection of M1 and M2 was a spread, then we must know the law ΛM1∧M2

generating its choice sequences. At no point though, of the generation of α in M2 we
know if α is 0 or not. Thus, we cannot tell if their intersection is M1 or the empty
spread. So, there is no ΛM1∧M2 , since a node of length 1 cannot be determined.
We see that a spread is a very general mechanism of generation of sequences, which
may depend on our knowledge of a solution of a mathematical problem, causing a lack
of knowledge, regarding its behavior. This is the most peculiar characteristic of the
spread concept.
Also, the expected law of the complement M ′:

(α0, α1, ..., αk) is accepted iff (α0, α1, ..., αk) is not ΛM -accepted,

determines sequences outside the body of M , but it is possible that a finite sequence
(α0, α1, ..., αk) is not ΛM -accepted, while an ancestor of it is, violating condition (ii) of
the spread definition.
If we use spread M2 of the previous counterexample, supposing that M ′

2 is also a spread,
then M ′

2 must not generate the sequence of M2 i.e., there must be some k such that
(α0, α1, ..., αk) is M2-accepted, but not M ′

2-accepted. Since we do not know some k such
that A(k), (α0, α1, ..., αk) must be (0, 0, ..., 0) i.e., 0 is not in [M

′
2], which we cannot know

since A is fleeing.
Another use of a fleeing property is in the following proposition:

Proposition 5.2: It is not intuitionistically accepted that a spread is either the empty
spread or a non-empty spread.

Proof: Let M be the spread which generates the constant sequence n, where n is the
first natural number satisfying a fleeing property A. Since we cannot find such an n we
cannot say that M is non-empty, and since we cannot show ∀n¬A(n), we cannot say
that M is the empty spread.�
If it is impossible that M is empty, then this does not mean intuitionistically that we
know a sequence of M i.e., the following implication

¬¬(∃α ∈ [M ])⇒ ∃α ∈M
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is not true.
Proposition A.4 of the Appendix shows that spreads, classically interpreted, correspond
to the closed subsets of Baire space.

A subspread K of M , K � M , is a spread such that, if (α1, α2, ..., αn) is ΛK-accepted,
then it is also ΛM -accepted.
As it is expected from the language of trees, a spread M is called splitting iff (∀α ∈
[M ])(∀N)(∃β ∈ [M ])(∃K > N)(Nβ = Nα ∧ Kβ 6= Kα), i.e., if each finite M -sequence
splits at some moment of its evolution into two different sequences.
A fan F is a finitely branching spread i.e., each finite ΛF -admitted sequence can be
extended only by finitely many naturals. A subfan T of F , T � F , is a subspread of
F . If the universal law applies only to 0− 1 sequences, then we take the fan 2ω, which
corresponds to the classical Cantor space C. All branches of an intuitionistic fan are
considered infinite. In Paragraph 12 we show that intuitionistic [α, β] is also a fan, a
result necessary to Brouwer’s proof of Uniform Continuity theorem.
The basic function of the spread concept is the description of a holistic and uncountable
continuum (see Proposition 8.2) without the use of absolute infinity. The cost of this
delicate function is that its generating choice sequences are incomplete, on-going objects
on which classical logic cannot be applied. In a sense, intuitionistic logic is the logic
of incomplete, on-going objects. Next paragraphs show how the study of intuitionistic
spreads deviates from the study of classical spreads (the closed subsets of Baire space)
because of the incomplete nature of the infinite sequences of intuitionistic spreads.

6. Brouwer’s continuity principle as a result of a definition and not as an
axiom. Brouwer conceived Continuity Principle (CP) in relation to Cantor’s diagonal
argument. He lectured on it even from 1915/16, though he introduced it in [Brouwer
1918] p.13. CP is not classically true, but its intuitionistic truth derives from the study
of sequences on a different kind of continuum. CP is formulated as follows:

Continuity Principle: If ωω is the body of the universal spread58 and ϕ : ωω → ω
a function on ωω, then for each choice sequence α in ωω there is a natural number N ,
such that, for each sequence β, which shares with α the same N -initial segment, β has
the same value under ϕ with α. In symbols:

(CP ) ∀α(α ∈ ωω)(∃N)(∀β,Nβ = Nα ⇒ ϕ(β) = ϕ(α)),

where Nα, is the N -initial segment of α. As we show in the Appendix, CP expresses
the continuity of ϕ if the species ωω is interpreted classically as a set. I.e.,

If a function ϕ : ωω → ω is interpreted classically, then it is always continuous.

While, classically, a function ϕ : N → N satisfying CP is continuous, the intuitionistic
principle CP asserts that all ϕ : ωω → ω are continuous. The clash though, is only
apparent. BIA and classical analysis behave differently on objects which have only a
common name. As Feferman notes (in [Feferman 1997c] p.222) regarding Brouwer’s
Uniform Continuity theorem59,

[This (Brouwer’s Uniform Continuity theorem), on the face of it, is in di-
rect contradiction to classical mathematics, but once it is understood that

58For simplicity, we identify ωω with [ωω].
59According to it a real function on [a, b] is uniformly continuous (see Paragraph 12).
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Brouwer’s theorem must be explained differently via the intuitionistic inter-
pretation of the notions involved, an actual contradiction is avoided. Per-
haps if different terminology had been used, classical mathematicians would
not have found the intuitionistic redevelopment of analysis so off-putting, if
not downright puzzling.]

The above comment suits CP too. Brouwer’s justification of CP reflects the intuition-
istic meaning of a function ϕ : ωω → ω, which is different from a classical function
ϕ : N → N.

The standard attitude towards CP is to treat it as an axiom after an intuitive justifi-
cation of it. For example CP is found as Brouwer’s Principle for numbers in [Kleene,
Vesley 1965], or as the WC − N axiom in [Troelstra, van Dalen 1988a].
The standard intuitive justification of CP is as follows:

Function ϕ is a kind of rule, which corresponds to each choice sequence α a unique
natural number. Sequence α though, is an on-going object of which we always know
an initial segment. Thus, the value ϕ(α) must depend on some initial segment Nα of
α. The way α grows after Nα is irrelevant to the value of α under ϕ. So, each sequence
β with the same N -initial segment to that of α will have the same value under ϕ with
that of α.

Brouwer himself considered CP as obviously true and for that reason he never bothered
justifying it more, using it freely. In order though to fully establish CP we need to say
more.
Treatment of CP as an evident truth gave CP gradually the character of “a natural
axiom, borne out by experience”60. This character though, is not consistent with BIA’s
constructive character. CP guarantees, given a function ϕ, for every choice sequence
α, the existence of an object, that of N , for which it does not provide a method of
constructing it. Even if someone accepts the above standard justification of CP, CP,
treated as an axiom, is constructively questionable.
There is another, more serious reason within BIA for not treating CP as an axiom. Ax-
iomatic definition of a concept is not in Brouwer’s spirit. To understand the concept of
a function ϕ : ωω → ω through the axioms in which this concept is found is an approach
that Brouwer confronted from his youth. That this was not Brouwer’s way is clear from
his attitude towards Fan theorem. This too, or Bar theorem, can be considered as an
axiom, but Brouwer tried to prove it and he never considered it as an axiom.
Hence, if we reject the axiomatic understanding of a concept, the only way to start
understanding CP is to clarify the concept of a function ϕ : ωω → ω from the intu-
itionistic point of view. Before we assert anything on functions ϕ : ωω → ω we must
say how we understand them. So, we need to define such a function. This attitude is a
fundamental element in our reconstruction of Brouwer’s analysis. A short description
of it is:

“BIA contains only definitions of concepts and not axioms.”

This a fundamental characteristic of a self-interpreted mathematical theory and BIA is
reconstructed as such a theory in [Petrakis 2010].

60This is a phrase of Veldman in [Veldman 1999] p.287.
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A classical function ϕ : N → N can be interpreted as an automaton, with input a
sequence α and output the natural number ϕ(α).

α∈N−→ ϕ
ϕ(α)−→

Classical sequence α is a completed object in W and its value ϕ(α) is independent of our
knowledge of how ϕ operated on α. An intuitionistic ϕ : ωω → ω will be a special case
of a function ϕ : A→ ω, where A is a species of choice sequences. A common element
of all these definitions is that the operation of ϕ depends on the way the elements of A
are defined.
In the case of a ϕ : ωω → ω the only thing we know of a sequence α in ωω is an initial
segment of α.

An intuitionistic ωω-function, ϕ : ωω → ω, is a law61 Λϕ, such that:

(i) Λϕ corresponds an ωω-sequence α to a unique natural number ϕ(α), based on an
initial segment of α of length N , Nα, for some N , or on any extension of it. We call
any such node a critical node for ϕ.
(ii) Λϕ decides effectively if an initial segment Mα of α is a critical node for ϕ or not.
If not, then there is no output (and conversely), while it gives the same output for all
extensions of a critical node62.

This definition is completely natural, since α is an on-going object and its value must
be determined some time in the course of its ‘becoming’, if we want ϕ(α) to depend
on our knowledge of α. It is this on-going character of intuitionistic sequences and the
aforementioned identification between ontology and epistemology in intuitionism which
force the above definition.
If M is an arbitrary spread, an intuitionistic M-function ϕ : M → ω, is defined
likewise.
In previous paragraph we saw that an intuitionistic sequence was identified with a
spread choice sequence. In complete analogy, a spread function ϕ is identified with a
function ϕ∗ on finite nodes63.
In analogy to the classical automaton, intuitionistic ϕ is represented as follows:

(α0,α1,...,αNα )−→ ϕ
ϕ(α)−→

Actually, ϕ is determined by a function ϕ∗ on the finite ω<ω-sequences. The existence
of Λϕ is equivalent to the existence of such a ϕ∗ satisfying:

(i’) For each α, there is some Nα such that,

ϕ(α) = ϕ∗(Nα).

(ii’) ϕ∗ decides effectively if an initial segment Mα of α is a critical node or not. Again
no output means that Mα is not critical and if Mα is critical and Nα � Mα, then

61In Brouwer’s words: “...by a function...we understand a law...” ([Brouwer 1927] p.458.
62There are many, more or less, equivalent formulations of the same concept.
63Epple (in [Epple 1997]) also introduces a spread function through a definition without though,

elaborating on the consequences, philosophical and technical, of such an attitude.
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ϕ∗(Nα) = ϕ∗(Mα).

Λϕ is actually Λϕ∗ and the automaton scheme becomes:

(α0,α1,...,αNα )−→ ϕ∗
ϕ(α)−→

and we say that ϕ∗ computes ϕ.

Proof of Continuity Principle: If β is a sequence such that Nβ = Nα, then ϕ
corresponds β to ϕ(α), since ϕ, by its definition, is activated only by Nα. I.e.,

ϕ(β) = ϕ∗(Nβ) = ϕ∗(Nα) = ϕ(α). �

Within our reconstruction of BIA, CP does not certify the existence of a natural number
without indicating a way of finding it. The existence of Nα, for each α, is part of the
way an intuitionistic function works and this is an information that such a function
carries with itself.
CP is classically false64, since the following function

ϕ(α) =

{
1 , if α 6= 0
0 , if α = 0

where 0 is the constant sequence 0, does not satisfy CP. But the above ϕ is not an
intuitionistic function since, if it were, it would correspond 0 to 0, based on a N0, for
some N . Consequently, sequences other than 0 would also correspond to 0 through ϕ.

Working exactly like the ωω-case, we get the continuity principle CP(M) for arbitrary
spread M .

CP (M) ∀α(α ∈ [M ])(∃N)(∀β,Nβ = Nα ⇒ ϕ(β) = ϕ(α)).

As we show in Proposition 9.3, CP(M) is a direct consequence of CP.
In BIA Brouwer studied only sequences generated within some spread M , thus CP(M)
holds for them. Later studies of choice sequences extended the way a choice sequence is
born and the validity of CP was a matter of examination. If a function ϕ is defined on
such sequences α, then the information needed for the action of ϕ is larger than a finite
initial segment of α. The study of such sequences had not always clear intuitionistic
motivation. We may also though, preserve the definitional approach to such extended
situations.
Let A a well-constructed species of sequences α. We define an intuitionistic A-finction
ϕ : A→ ω, or A-function ϕA, a correspondence law, for which the following hold:

(i) ϕA gives the unique value ϕA(α) to α, relying on a finite amount of information
Π(α) concerning α as an input. Information Π(α) is formulated in a way compatible to
the way A is defined.
(ii) ϕA answers effectively the question whether a finite amount of information Π

′
(α)

regarding α, ( Π(α) and Π
′
(α) are analogously formulated) as an input activates ϕ(α).

64In Kleene’s system CP is the only formal axiom which separates his system of intuitionistic analysis
(FIM) from classical analysis. In our view though, this single formal difference does not grasp the
difference between the classical and the intuitionistic framework.
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If there is such an output for Π
′
(α), it is always ϕ(α). Especially, if Π

′
(α) contains

Π(α), then the output is always ϕ(α).

Schematically, ϕA is of the form:

Π(α)−→ ϕ
ϕ(α)−→

Thus, an A-function is determined by the input sequences α, the kind of the finite
information Π(α) which activates its mechanism, and the values ϕ(α). All these three
elements of ϕA must be compatible to each other.
The continuity principle corresponding to A-functions expresses the fact that for each
sequence α of A there is a finite amount of information Π(α) for which each A-sequence
β accompanied with finite information Π(β) “equal” to Π(α), has the same value under
ϕ with that of α. I.e.,

(CPA) ∀α(α ∈ A)(∃Π(α))(∀β,Π(β) = Π(α)⇒ ϕ(β) = ϕ(α)).

Obviously, equality Π(β) = Π(α) is defined with respect to the nature of A.

Proof of CPA: If β is a sequence with Π(β) = Π(α), then, since by (i), ϕ is activated
by Π(α), and produces ϕ(α) as an output, then ϕ corresponds ϕ(α) to β too.�
Again, CPA is a simple consequence of the way an A-function is defined.
Of course, there is no a priori reason that CPA leads to a CP of an extensional character,
since there is no a priori reason that the needed information Π(α) to be contained to
an initial segment of α. Hence, a question found in post-Brouwer literature is, if it is
possible the following extensional continuity principle could hold:

(CPE) ∀α(α ∈ A)(∃N)(∀β,Nβ = Nα ⇒ ϕ(β) = ϕ(α)).

Hence, the question is:

(CPA)
?⇒ (CPE).

van Atten and van Dalen, in [van Atten, van Dalen 2002], trying to justify CPE, without
though considering all the above definitions, provide some examples which are worth
discussing under the light of them.

The first example, formulated in our language, is the following:
Function ϕ corresponds to each sequence its 100th term. For a sequence α its four first
terms are introduced together with the information that α is constant after its fourth
term. If β is a sequence with the same 4-segment, then ϕ does not send β to the same
value with α, since β may evolve in a different way. Thus, the extensional information
which activates ϕ(α) does not activate ϕ(β).
van Atten and van Dalen say that this example suggests a violation of CP, since ϕ
does not behave like a universal ϕ. This violation though, is explained by the fact
that the information on α is larger than any of its initial segments. I.e., CP is violated
but CPA is not, since the information Π(β) on β is strictly less than Π(α). The same
example couldn’t bother also one who believed in CPE, since all the information which
accompanies the 4-segment of α can take an extensional form. Π(α) contains the
information that all 100 terms of α are (α(0), α(1), α(2), α(3), α(3), ..., α(3)︸ ︷︷ ︸

100

), therefore
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any sequence with the same 100-segment has the same value under ϕ.
Hence, it makes sense to argue that:

A necessary and sufficient for (CPA) ⇒ (CPE) to hold is that the information Π(α),
for each input α to be equated to an initial segment of α.

In the second example of van Atten and van Dalen A is the species of all finally constant
sequences. For each α in A the activating Π(α) is an initial segment of α containing the
constant value and the output is that constant value. Obviously, if we introduce an Nα

without the information that one of the constant term is contained in Nα, then ϕ(α)
is not activated. Moreover, the activating information Π(α) is not equivalent to any
of the initial segments of α, since Π(α) contains complete knowledge of α. Each plane
segment Nα though, does not contain the information that α is constant. Obviously
ϕ satisfies CPA, but it does not satisfy CPE. Thus (CPA) ⇒ (CPE) cannot hold in
general, since there are activating information which are not contained in any initial
segment of a sequence. A strict finitist though, i.e., a man denying even the potential
kind of infinity, wouldn’t consider the above information Π(α) on α as finite, but that
seems to us too narrow point of view.
Such generalized functions corresponding to general kinds of species of sequences were
studied in post-Brouwer literature65. The naturally arising question66, is to find those
species of sequences for which (CPA)⇒ (CPE) holds.

7. Immediate consequences of the Continuity Principle. The first application
of CP in [Brouwer 1918] was the proof of uncountability of Baire space, independently
from Cantor’s diagonal argument. Brouwer reaches uncountability through CP in the
most direct way. Of course, uncountability is at first a negatively defined concept and
any proof of

N(a) : N is a negatively defined concept,

has to be a reductio ad absurdum proof.

Proposition 7.1: The universal spread ωω is uncountable i.e., there is no universal

intuitionistic function ϕ : ωω
1−1→ ω.

Proof: If ϕ : ωω → ω, then, by CP, ∃N such that ∀β,Nβ = Nα ⇒ ϕ(β) = ϕ(α).
Hence, condition ϕ(β) = ϕ(α) does not entail α = β.�
Thus, for any fixed function ϕ and sequence α, there is a sequence β 6= α such that
ϕ(β) = ϕ(α).
Hence ωω is not equipollent to any countable species of natural numbers, since a func-
tion ϕ : ωω → ω cannot be defined, while within Cantor’s proof, ωω is not countable
since each function f : ω → ωω does not exhaust ωω. Cantor’s proof is intuitionistically
a legitimate one, although Brouwer’s proof stems immediately from his concept of an
intuitionistic function ϕ : ωω → ω.

Proposition 7.2: The intuitionistic continuum <Br is uncountable.

Proof: Suppose ϕ : <Br
1−1→ ω. If (qα0 , qα1 , ..., qαn , ...) determines an irrational number

and (qα0 , qα1 , ..., qαn) is a critical segment to ϕ∗, then sequence (qα0 , qα1 , ..., qαn , qαn , qαn , ...)
the dress of (α0, α1, ..., αn, αn, αn, ...), which determines the rational number qαn , has

65See e.g., [Troelstra 1977] and [Troelstra, van Dalen 1988b].
66See e.g., [van Atten, van Dalen 2002].
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the same value with (qα0 , qα1 , ..., qαn , ...) under ϕ∗, which is absurd, since [qαn ] is rational
and [(qα0 , qα1 , ..., qαn , ...)] is irrational. �
Of course, there are spreads generating a finite number of choice sequences, therefore,
with a countable body (note that countability is a positively defined concept). It is
interesting to determine the uncountable spreads generalizing the previous two proofs.
Each initial segment of a sequence in ωω or <Br splits at some point. This ensures
uncountability. As we show in Proposition A.7, a splitting spread in Baire space has
no isolated points. The following result is an immediate generalization of the previous
uncountability facts.

Proposition 7.3: A non-empty splitting spread M is uncountable.

Proposition 7.3 is the intuitionistic analogue to the following classical proposition, which
generalizes Cantor’s result of the uncountability of 2ω. Since its classical proof is inter-
esting from the intuitionistic point of view we give it next.

Proposition 7.4 (Generalized Cantor’s theorem): A non-empty perfect (i.e.,
closed (classical spread) and splitting) set M of N has the cardinality of the con-
tinuum.

Proof: Classically, C is proven to be uncountable through Cantor’s diagonal argument,
and, since it is equipollent to P(N), it has the cardinality of the continuum. Obviously,
C is a perfect set. In order to show that a non-empty perfect set M of N has the
cardinality of the continuum it suffices to show that it contains a copy of C, i.e., that C
is embedded to M .
Since M is splitting, we define functions A,∆ : M<ω → M<ω, with A(ξ) = b and
∆(ξ) = c, where b, c are incomparable extension nodes of ξ (that can be found effec-
tively).
Classically, at this point a choice principle is used, which is intuitionistically though
accepted, by the intuitionistic interpretation of existence. I.e., the existence for each
node ξ of nodes b, c is guaranteed by the spread law ΛM .
Through A,∆ the following ϕ : 2<ω →M<ω is defined:

(I) ϕ(<>) = <>.
(II) ϕ(ξ ∗ 0) = A(ϕ(ξ)).
(III) ϕ(ξ ∗ 1) = ∆(ϕ(ξ)).

This recursive definition is intuitionistically accepted. Through A,∆ ϕ corresponds to
each finite 0, 1-sequence a node of M . 0′s correspond to a left, A, split, while 1′’s to a
right, ∆, split. E,g,.

(1, 0, 0, 1, 0)
ϕ7→ (A∆AA∆(<>)).

The construction of ϕ resembles the construction of Kξ in the topological characteriza-
tion of C (Proposition A.8).
Clearly, ϕ satisfies the following properties:

(i) l(ξ) ≤ l(ϕ(ξ))
(ii) ϕ(ξ) � ϕ(ξ ∗ 0), since ξ � A(ξ).
(iii) ϕ(ξ) � ϕ(ξ ∗ 1), since ξ � ∆(ξ).
(iv) ϕ(ξ) � ϕ(ξ ∗ ζ), by (ii) and (iii).
(v) ξ � ζ ⇒ ϕ(ξ) � ϕ(ζ), by (iv).
(vi) ξ ./ ζ ⇒ ϕ(ξ) ./ ϕ(ζ).
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(vi) is justified by the fact that the split of the common segment of ξ and ζ at some
level i leads to a split of the image of the common segment under ϕ at some level j.
Through ϕ we define ϕ̃ : C →M by:

α
ϕ̃7→ lim

N
ϕ(Nα) = sup{ϕ(Nα), N ∈ ω}.

ϕ̃ is 1 − 1, since, if α 6= β, then Nα 6= Nβ, for some N , i.e., Nα ./ Nβ, thus, by (vi),
ϕ(Nα) ./ ϕ(Nβ), which amounts to ϕ̃(α) 6= ϕ̃(β).
Actually, ϕ̃ is a continuous function computed by ϕ.�
Just as the proof of Cantor’s theorem is intuitionistically accepted, although uncount-
ability is interpreted as sequential inexhaustibility, the above proof of generalized Can-
tor’s theorem is intuitionistically accepted, although the proof of Proposition 7.3 is
more direct expressing intuitionistically the content of generalized Cantor’s theorem.
Thus, the following are in complete analogy:

¬(∃e : ωω → ω)

Cantor
=
¬(∃e : M → ω)

Gen.Cantor
.

In intuitionistic descriptive set theory the question which spreads cannot be embedded
to ω i.e., which spreads behave like splitting spreads, is studied (see [Petrakis 2010]).

Finally, we discuss two related propositions. The first, in [van Atten, van Dalen 2002]
p.340, translated though, in our language, is the following:

Proposition 7.5: Assume the creating subject generates choice sequences as individual
objects, and can therefore enumerate the sequences generated so far. Then, CP does
not hold.

The “proof” of this proposition is similar to the proof of Proposition 7.1. The hypothesis
of enumeration of choice sequences by the creating subject (CS) obviously contradicts
CP. This proposition, together with the following one, are treated by van Atten and
van Dalen as arguments against the universal truth of CP. Within our reconstruction
of the intuitionistic function though, this is not the case.
One way, not the only one, that CS enumerates choice sequences is the following: First
he determines α1(0), secondly α1(1) and α2(0), thirdly α1(2), α2(1) and α3(0) and so
on. This enumeration though, of the choice sequences does not result from a universal
ϕ, but it is constructed in parallel to gradually formed sequences. The whole structure
of Proposition 7.5 is the mixture of two different frameworks regarding the concept of
function. CP is the result of a certain understanding of a function, with respect to which
a universal function is a mechanism activated by finite nodes and at the same time it
is independent from them. The above enumeration of the CS though, is an incomplete,
on-going object too, absolutely dependent on the choice sequences it enumerates. Of
course, this incomplete object violates CP, but this fact cannot affect the validity of
CP relative to an intuitionistic function, a complete object, exactly like the spread law,
which is defined independently too from its generating choice sequences.
van Atten and van Dalen (in [van Atten, van Dalen 2002] pp.340-41) prove the following
variation of previous proposition.

Proposition 7.6: If (αn)n is an enumeration of choice sequences, then a functional is
defined through (αn)n violating CP.
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The above result is, in our opinion, of no special importance regarding our CP, since
there is no indication to how the supposed enumeration is constructed. I.e., a violation
of CP is generated by a hypothesis with no constructive content.
The above two propositions result from an axiomatic approach to CP and a linguistic
treatment of the function concept, resembling classical mathematics.

8. Brouwer’s external notion of real Function. For Brouwer a real Function i.e.,
a function from a species of real numbers like the unit continuum, where a real number
(or point core) α is the species of all reals equal to α, to the species of real numbers
i.e., a real Function Φ : [0, 1]Br → RBr, is67

[a law that, with each of certain point cores of the unit continuum, which
will be denoted by ξ and form the “domain of definition” of the function,
associates one point core of the linear continuum, which will be denoted by
η = Φ(ξ)]

Therefore, Φ : [0, 1]Br → RBr is a law ΛΦ such that

η
ΛΦ7→ Φ(ξ).

In contrast to his concept of an intuitionistic function ϕ : ωω → ω, which was treated
(by Brouwer) or defined (by us) internally, Brouwer’s concept of real Function68 is de-
fined by Brouwer externally. A function ϕ is treated or defined internally, since ϕ is not
just a law which sends choice sequences to naturals but the way this correspondence
is achieved is an essential part of the concept ϕ. On the other hand, Φ is defined by
Brouwer externally, since Φ is just a law which corresponds point cores to point cores
without any explication of how this correspondence is achieved. So, there is an essential
conceptual difference between Brouwerian concepts ϕ and Φ, which prevailed also in
post-Brouwer presentations of the same concepts. Generally ϕ is treated internally, ei-
ther through a definition (e.g., see [Epple 1997]) or, standardly, through the continuity
principle (axiom). Functions Φ are treated as laws possessing no internal description of
their structure. In this paragraph we discuss this asymmetry of the two concepts and
in the next one we present an internally defined concept of intuitionistic Function Φ in
complete analogy to ϕ.

In [Brouwer 1927] Brouwer proved his negative continuity theorem, namely that a hy-
pothesis of discontinuity of a real Function leads to an unacceptable proposition i.e.,
to a weak counterexample. This result is independent from CP i.e., the argument used
does not take into account CP.

A real Function Φ is positively continuous at a point core ξ0 iff for each rational ε > 0,
there is a rational aε such that

|ξ − ξ0| < aε ⇒ |Φ(ξ)− Φ(ξ0)| < ε.

At this point we do not explain all the above terms, something we do soon, when we
present Veldman’s results.

67See [Brouwer 1927] p.458.
68We use the term “Function” for a mapping with choice sequences as values and the term “function”

for a mapping with naturals as values.
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A real Function Φ is negatively continuous at a point core ξ0 iff for each Cauchy se-
quence (ξn)n of point cores such that ξn → ξ0, then Φ(ξn) → Φ(ξ0) negatively i.e.,
¬¬[Φ(ξn)→ Φ(ξ0)].
The following proposition was known to Brouwer since 1918.

Proposition 8.1 (Brouwer’s negative continuity theorem (BNCT) 1927): If
Φ : [0, 1]Br → RBr is a real Function, then Φ is negatively continuous i.e., it is nega-
tively continuous at each point core ξ0 of [0, 1]Br.

Proof: Let (ξn)n be a Cauchy sequence of point cores such that ξn → ξ0, for some
point core ξ0, and suppose ¬[Φ(ξn)→ Φ(ξ0)]. Thus, without loss of generality, there is
a rational 1

p
, where p is a natural, and a sequence of naturals pn, such that, for each n

(∗) |Φ(ξpn)− Φ(ξ0)| > 1

pn
,

where pn > pn−1, for each n.
Then, a point core ξω of the unit continuum is defined as follows: for each n, the first
n steps of the formation of ξω, actually of a representative of ξω, are the same to the
corresponding steps of ξ0. These steps either concern finite families sub-intervals of
[0, 1]Br or finite sequences of rationals. But at each (n + 1)-step the creating subject
reserves the right to choose for all the rest steps to follow the steps of formation of ξpn .
That is possible, since ξn → ξ0. In that way a point core of [0, 1]Br is gradually formed,
but we cannot know beforehand its value Φ(ξω), since we cannot know if ξω is actually
ξ0 or some ξpn , and because of (∗), Φ(ξ0) 6= Φ(ξpn), for each n. Therefore, we have
reached a contradiction, since we had supposed that Φ was a full function i.e., with
[0, 1]Br as its domain of definition, and a point core ξω of [0, 1]Br was constructed for
which its value under Φ cannot be calculated. If it was, then a decision of the creating
subject would be known before it was taken, and that is impossible. We could reach
the same impossibility, if instead an unsolved mathematical problem was used in the
construction of ξω.�
Brouwer included this weak result in his 1927 paper because he believed that his BNCT
was suggestive to his UCT, that every full real Function on the unit continuum is uni-
formly continuous, which presupposes his fan theorem.
BNCT is in a sense an expected result of the external, therefore independent of time,
character of a real Function. While the inputs of Φ, the core points of [0, 1]Br are
on-going objects, being generated in time, ΛΦ is timeless and pre-existent. In that way
it is not strange that a choice sequence is formed in time such that its value under Φ
depending on its way of formation cannot be calculated. In our opinion BNCT is the
result of the incompatibility between the on-going inputs ξ and the timeless Function
law ΛΦ. This time asymmetry is not found in the case of an intuitionistic function
ϕ, the law Λϕ of which respects the on-going character of its inputs. Thus, Brouwer’s
result seems to us philosophically poor, since it is the result of an asymmetrical co-
existence of concepts, in the same way results on externally defined ϕ seemed to us
poor in Paragraphs 6 and 7.
Veldman, in [Veldman 1982], proved that CP guarantees the pointwise continuity of a
function defined on the spread of canonical real numbers, independently from Brouwer’s
Uniform Continuity theorem and consequently from Fan theorem. Of course, Brouwer’s
theorem is much stronger, but Veldman’s result is worth mentioning due to its inde-

45



pendence from BFT and the use of actually the same concept of real Function.
Having fixed an enumeration of rational numbers, a real number α (r.n) is an element
of ωω such that:

|qα(n) − qα(n+1)| <
1

2n+1
, ∀n ∈ ω. (1)

The spread of r.n. RBr is determined by the above condition which generates its
elements. As we said in Paragraph 5, the equality of two r.n. α, β is defined by

α ≈ β ⇔ |qα(n) − qβ(n)| <
1

2n−1
, ∀n ∈ ω. (2)

A real Function Φ : RBr → RBr is a law ΛΦ which corresponds to each r.n. α a r.n.
Φ(α)

α
ΛΦ7→ Φ(α) s.t.,

α ≈ β ⇒ Φ(α) ≈ Φ(β). (3)

Veldman’s definition, is actually Brouwer’s, since, due to (3), a point core of the con-
tinuum is sent to another point core, and it is also external, since it does not explain

how such a correspondence α
ΛΦ7→ Φ(α) is understood. In our opinion though, the cor-

respondence of infinitely proceeding sequences to other such sequences begs for such
an understanding, the same way this understanding was needed in the intuitionistic
function ϕ-case.
The definition of operations between r.n. is straightforward. The sum, for example, is
defined by (α + β)(n) = m, where m is the index of qα(n)+qβ(n) in the fixed enumeration
of rationals i.e.,

q(α+β)(n) = qα(n) + qβ(n),

where
α 7→ qα(n)

is the standard correspondence between a r.n. α and its rational approximation. Nat-
urally,

q|α(n)| = |qα(n)|

and
α < β ⇔ (∀n)(qα(n) < qβ(n)). (4)

Therefore, the composite expression

|α− β| < 1

2k

means that

(∀n) q|α−β|(n) = |q(α−β)(n)| = |qα(n) − qβ(n)| <
1

2k
. (5)

Under the above understanding we prove the following proposition.

Proposition 8.2 (Veldman 1982): If Φ : RBr → RBr is a real function (in the above
sense of Veldman), then Φ is continuous at every point of RBr i.e.,

(∀α ∈ RBr)(∀m)(∃n)(∀β ∈ RBr) |α− β| < 1

2n
⇒ |Φ(α)− Φ(β)| < 1

2m
. (6)
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Proof: We fix a natural number m and we define the following intuitionistic function
θ : RBr → ω

α 7→ Φ(α)(m+ 2),

for each r.n. α 69. Fixing a r.n. α and applying CP on θ and the spread RBr we get

(∃n)(∀γ)((nγ = nα)⇒ Φ(γ)(m+ 2) = Φ(α)(m+ 2)). (7)

As a result of (7)

|qΦ(α)(m+2+k) − qΦ(γ)(m+2+k)| <
1

2m+1
. (8)

To see why (8) is true we check first the case k = 1.

|qΦ(α)(m+3) − qΦ(γ)(m+3)| = |qΦ(α)(m+3) − qΦ(α)(m+2) + qΦ(γ)(m+2) − qΦ(γ)(m+3)|

< |qΦ(α)(m+3) − qΦ(α)(m+2)|+ |qΦ(γ)(m+2) − qΦ(γ)(m+3)| <
2

2m+3
=

1

2m+2
<

1

2m+1
,

since the triangle inequality holds directly on rationals. Working likewise, if k = 2, then

|qΦ(α)(m+4) − qΦ(γ)(m+4)| < (
3

4
)

1

2m+1
,

and in the general case

|qΦ(α)(m+2+k) − qΦ(γ)(m+2+k)| < (
2k − 1

2k
)

1

2m+1
.

As a consequence of (8)

|Φ(α)− Φ(γ)| < 1

2m
, (9)

since

|qΦ(α)(n) − qΦ(γ)(n)| <
1

2m+1
<

1

2m
,

for n ≥ m+ 2.
If β is any r.n. such that |α− β| < 1

2n
, then

(∃γ) (nγ = nα ∧ β ≈ γ). (10)

First we take the n-segment of γ to be exactly nα. For all terms qα(1), ..., qα(n), |qα(1) −
qβ(1)| < 1

20 , ..., |qα(n) − qβ(n)| < 1
2n−1 , by the definition of hypothesis |α− β| < 1

2n
. Next

term γn+1 has to satisfy both of the following inequalities

|qγ(n+1) − qγ(n)| = |qγ(n+1) − qα(n)| <
1

2n+1
, (11)

and

|qγ(n+1) − qβ(n+1)| <
1

2n
. (12)

69Note that θ is also an intuitionistic function in our sense, if Φ was given as an intuitionistic Function
in our sense.
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A simple line figure with qα(n) and qβ(n) and the corresponding intervals with them
as centers and of length 1

2n
shows that there is always a rational q = qλ in the fixed

enumeration satisfying the above inequalities. Therefore, we define γ(n+ 1) = λ. By
that way we proceed at each step defining the element γ of (10).
By the definition of Φ though, Φ(β) = Φ(γ). Therefore, the inequality |Φ(α)−Φ(γ)| <

1
2m

becomes

|Φ(β)− Φ(α)| < 1

2m
. �

In [Veldman 1999] we also find his treatment of NCT. Veldman claims to show NCT
directly i.e., in a stronger way, rather than finding a weak counterexample. His proof
though, uses CP as an axiom, while Brouwer’s proof of BNCT is CP-free.

First we prove a proposition which is standard in post-Brouwer expositions of CP.

Proposition 8.3 (Negation of a form of the principle of the excluded middle
NPEM) (CP is used as an axiom):

¬[(∀α ∈ ωω)((α = 0) ∨ (α 6= 0))].

Proof: Suppose that

(∀PEM) (∀α ∈ ωω)((α = 0) ∨ (α 6= 0)).

Then, we may define on ωω the following function:

ϕ(α) =

{
1 , α 6= 0
0 , α = 0

Hence, by CP, there is a natural number N such that each sequence β, N -same to 0,
takes the value 0. But, as we have already said in Paragraph 6, this is absurd, since
there is a sequence β, N -same to 0, which is not equal to 0, therefore it is mapped to
1 under ϕ.�
Although PEM in the form (P ∨ ¬P ) cannot be refuted, since in the intuitionistic
propositional calculus

¬¬(P ∨ ¬P )

is proved, the form ∀PEM of PEM, or its obvious generalization

(∀α)(P (α) ∨ ¬P (α)),

is standardly considered refuted. Actually, in the following proposition Veldman con-
siders the following special case

(∀α ∈ ωω)((α 6= 0) ∨ ¬(α 6= 0))

to be refuted.
From our point of view though, the above result is valid only in an axiomatic framework
regarding intuitionistic analysis where the concept of intuitionistic function is only ex-
ternally understood. Within our definition of function, the function ϕ of previous
proposition is not an intuitionistic function at the first place, since there is no function
ϕ∗ given, which determines an initial segment of 0 responsible for the value of 0 under
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ϕ. I.e., the above negation of ∀PEM is based on an external concept of intuitionistic
function, which is certainly outside Brouwer’s spirit, and on a consequent axiomatic
understanding of CP, which is fundamentally against Brouwer’s conceptualism. In
Brouwer’s non-axiomatic spirit ∀PEM is unacceptable through weak counterexamples
and not strictly refuted. That would require a fundamentally different treatment of CP,
from a self-evident or provable truth to an axiom.

Proposition 8.4 (Veldman’s negative continuity theorem, (VNCT 1999):
There is no real Function f such that:
(i) f(0) = 1, and
(ii) f( 1

2n
) = 0, for each n.

Proof: Following [Veldman 2001], we suppose that there is such f and we finally reach
a contradiction.
First we define the following sequences:
e0(n) is 1, if after the n-term of the decimal expansion of π there exist 98 consecutive
9’s, while before that term this is not true, and e0(n) is 0 otherwise. Of course, until
now we do not know if e0(n) is constantly 0 or not, since the existence of such a sequence
of consecutive 9’s is undecidable.
We define t : N→ N s.t.,

qt(n) =
1

2n
, ∀n.

Also, sequence β is defined by

β(n) =

{
t(n) , if e0(i) = 0, ∀i ≤ n
t(i0) , i0 min i: e0(i) 6= 0

Thus, β(n) equals t(n) until the consecutive 9’s are found and if they are found it
becomes constant. If e0 = 0, where 0 is the constant sequence of 0’s, then β(n) = t(n),
for each n. Hence, qβ(n) = qt(n) = 1

2n
and β ≈ 0, since | 1

2n
− 0| = 1

2n
< 1

2n−1 . Then, by
the hypothesis on the existence of such an f , f(0) = 1, hence f(β) = 1.
If e0 6= 0 i.e., if the consecutive 9’s were found, then

(β(n))n = (t(1), t(2), ..., t(i0 − 1), t(i0), t(i0), t(i0), ...) = (t(1), t(2), ..., t(i0 − 1), t(i0)),

and

(qβ(n))n = (qt(1), qt(2), ..., qt(i0−1), qt(i0)) = (
1

2
, ...,

1

2i0−1
,

1

2i0
).

Therefore, β ≈ 1
2i0

, since |qβ(n) − 1
2i0
| < 1

2n−1 , for each n, since the inequality holds
trivially if n ≥ i0 and if n < i0, clearly | 1

2n
− 1

2i0
| < 1

2n−1 . Since β ≈ 1
2i0

, then, by the
hypothesis on f , f(β) = f( 1

2i0
) = 0. In summary,

e0 = 0⇒ β ≈ 0 ∧ f(β) = 1 (∗)

e0 6= 0⇒ β ≈ 1

2i0
∧ f(β) = 0. (∗∗)

But we are unable to calculate f(β), for we do not know how to define (f(β))(2).
Consider (f(β))(2) was known. Then q(f(β))(2) as a rational satisfies the following in-
stance of the principle of the excluded middle:

(q(f(β))(2) ≥
1

2
) ∨ (q(f(β))(2) <

1

2
). (†)
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Suppose first that q(f(β))(2) ≥ 1
2
. Then, f(β) 6= 0, since if f(β) = 0, then |q(f(β))(2)−0| <

1
2
, which is by hypothesis absurd. Therefore, f(β) 6= 0 and by (∗∗), we get ¬¬(e0 = 0).

I.e.,

q(f(β))(2) ≥
1

2
⇒ ¬¬(e0 = 0).

If q(f(β))(2) <
1
2
, then f(β) 6= 1, since if f(β) = 1, then |q(f(β))(2) − 1| < 1

2
, which is

absurd by our hypothesis on q(f(β))(2). Since f(β) 6= 1, then by (∗), ¬(e0 = 0). I.e., we
have proved that

q(f(β))(2) <
1

2
⇒ ¬(e0 = 0).

So (†) led to
¬¬(e0 = 0) ∨ ¬(e0 = 0),

which contradicts Proposition 8.3.�.
Both proofs of NCT show that a certain real Function is not computable. In Brouwer’s
proof, if it was computable, it would mean that we would know the solution of a still
unsolvable problem, while in Veldman’s proof it would lead to an absurdity, through
the negation of ∀PEM . Veldman claims that Brouwer proved NCT in a weak sense
only, while if one wants to prove NCT in a strong sense, one needs CP. Surely, a proof of
NCT in a strong sense needs CP to be used as an axiom, but this, in our opinion, is not
a real win. To prove something strongly does not mean that we believe it more, since
we have to explain the axioms used to provide its strong proof. We believe that if we
want to preserve the definitional, non-axiomatic character of Brouwer’s constructivism,
we should not treat CP as an axiom, therefore we should not consider Proposition 9.3
as a real intuitionistic proposition. Although we do not know when this proposition
appeared for the first time, we haven’t found such a proposition in Brouwer’s works.
We tend to believe that Proposition 9.3 is a post-Brouwer proposition related to an
axiomatic understanding of CP and an external conception of an intuitionistic function
ϕ : ωω → ω.

9. The continuity principle for the intuitionistic Function Φ : ωω → ωω. We
introduce the concept of an intuitionistic Function, defined on choice sequences of a
spread and taking values also on the choice sequences of a spread, in the same way we
introduced an intuitionistic function in Paragraph 6. We stress though, what we have
already mentioned in previous paragraph, that Brouwer never gave an internal definition
of an intuitionistic Function Φ : ωω → ωω, although he implied an internal concept of
an intuitionistic function ϕ : ωω → ω. Our reconstruction of intuitionistic mappings
and the consequent treatment of the corresponding continuity principles as theorems
derived from definitions rather than axioms is a deviation from Brouwer’s writings but,
in our view, not from Brouwer’s spirit. We consider the following definition necessary,
in order the concept of intuitionistic Function is understood constructively, a normative
feature of all intuitionistic objects.

An intuitionistic ωω-Function, Φ : ωω → ωω, is a law which corresponds an ωω-sequence
α to a unique ωω-sequence β, based on a law Φ∗, which correlates finite sequences of
naturals such that:
(i) if N ≤ M , then Φ∗(a1, a2, ..., aN) � Φ∗(a1, a2, ..., aM), where � means that the
sequence Φ∗(a1, a2, ..., aN) is an initial segment of the sequence Φ∗(a1, a2, ..., aM). Note
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that Φ∗(a1, a2, ..., aN) may be the root <>.
(ii) Φ∗ is not finally constant.
(iii) Φ(α) = supNΦ∗(Nα) i.e., Φ(α) is approximated by the segments Φ∗(Nα). Then, we
say that Φ∗ computes Φ.

This definition is natural, since the image of an on-going object through Φ is another on-
going object. Of course, if Φ(α) = β, not every segment of β is the image of a segment
of α under Φ∗. If M1, M2 are arbitrary spreads an (M1,M2)-Function Φ : M1 →M2 is
defined in the same way.
As we show in the Appendix, the above definition is the continuity condition of a
function Φ : N → N . Hence, the definition of an intuitionistic function Φ : ωω → ωω is
such that the following is automatically satisfied:

An intuitionistic Function Φ : ωω → ωω, interpreted classically, is always a continuous
function.

We may give an intuitionistic meaning to this fact.
An intuitionistic Function Φ : ωω → ωω is called continuous iff for each sequence α the
following condition is satisfied:

∀λ ∈ ω ∃k ∈ ω, such that, β, α k-equal ⇒ Φ(β),Φ(α) λ-equal.

Proposition 9.1 (Continuity Principle of Intuitionistic Functions (CPF)): An
intuitionistic Function Φ : ωω → ωω is always continuous.

Proof: Let α be any sequence of the universal spread ωω. The λ-initial segment of Φ(α)
is by hypothesis determined by some k-initial segment of α. The natural number k can
be found effectively as follows: We calculate finite sequences Φ∗(α1), ...,Φ∗(α1, α2, ..., αk)
until we reach or surpass the λ-initial segment of α for the first time.
Obviously, each k-same to α sequence β is such that Φ(β) is λ-same to Φ(α).�
The concept of a continuous Function is not a replica of the classical one, but it has an
intuitionistic meaning. The continuous property reflects the fact that the calculation
of any λ-segment of a sequence Φ(α) doesn’t only expresses the λ-knowledge of Φ(α),
but also the λ-knowledge of any k-same sequence to α. Therefore, through the gradual
determination of Φ(α) the values of a species of sequences is gradually determined.
Proposition 9.1 can be considered as a continuity principle (CPF) for an intuitionistic
Function, and as in the function case, it is a direct result of its definition. The above
definition though, is the necessary result of the action of Φ on on-going objects with
values also on on-going objects.

(I) Φ corresponds to the on-going object α an on-going object β. This is done necessarily
through some Φ∗, since we only know initial segments of the on-going objects α.
(II) As the input information i.e., the length of the initial segments of α, grows, our
knowledge of the output sequence i.e., the length of the initial segments of the output
sequence β, has to grow too. Of course, Φ∗ must not be finally constant, if we want to
find an infinite sequence β as the value of α under Φ. Condition (i) of our definition is
necessary if we want a gradual knowledge of Φ(α). If Φ∗(a1, a2, ..., aN),Φ∗(a1, a2, ..., aM)
were not related, then we wouldn’t have any partial knowledge of Φ(α) at any stage of
the formation of α.
(III) The value of α under Φ, because of condition (ii) of our definition, cannot be other
than the on-going object
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Φ∗(a1)
Φ∗(a1, a2)

. . . . . . . . .
Φ∗(a1, a2, ..., aN)

. . . . . . . . . . . . . . .

Suppose someone defined intuitionistic Function Φ : ωω → ωω as follows:

If ϕ1, ϕ2, ..., ϕn, ... is a constructively given sequence of intuitionistic functions, then let
f : ωω → ωω be the object satisfying

f(α) = (ϕ1(α), ϕ2(α), ..., ϕn(α), ...).

At first sight, this seems to be an equally good way to define an intuitionistic Function.
Moreover, if ϕn(α) = α(n) the identity Function is determined, while if ϕn(α) = n a
constant Function is determined corresponding to each sequence of ωω the sequence of
ω.
Apart from the fact that the concept of a constructively sequence is not specified, the
following problem is found with regard to the above definition :

The values of ϕn(α) are not independent from us, but they depend on some initial
segments of α. Since α is gradually generated, at each stage of its formation only some
sequences ϕn(α) are generated. Meaning that at each moment we do not know any
initial segment of f(α), since it is possible that it is not enough to generate e.g., ϕ∗1.
It is though, essential to our knowledge of an on-going object that at each moment we
posses a partial knowledge of it. But,

(i) Partial knowledge of an on-going object intuitionistically means knowledge of an ini-
tial part of it.
(ii) Knowledge of an on-going object intuitionistically means the gradual and ever-
growing partial knowledge of it.

Only our initial definition is compatible with (i) and (ii), being in “parallel” to the
definition of a spread.

If M1, M2 are spreads, then an intuitionistic (M1,M2)-Function Φ : M1 → M2 is de-
fined similarly and a (M1,M2)-Function is proven continuous likewise.

A Function Φ : M1
1−1−→ M2 and onto M2 is a homeomorphism iff there is a Function

Φ−1 : M2 →M1, such that Φ ◦ Φ−1 = idM2 and Φ−1 ◦ Φ = idM1 .

CPF is classically false: As we show in the Appendix, there exist non-continuous func-
tions f : N → N . We consider there the following map:

f(α) =

{
0 , if α = 0
1 , if α 6= 0

This map though, is not an intuitionistic Function, since there is no monotone f ∗ that
computes f . If there was such f ∗, then, for each n there is m such that,

f ∗(0, 0, ..., 0︸ ︷︷ ︸
n

) = (0, 0, ..., 0︸ ︷︷ ︸
m

).

Since f ∗(0, 0, ..., 0︸ ︷︷ ︸
n

, 1) is an initial segment of 1, then in both cases,

f ∗(0, 0, ..., 0︸ ︷︷ ︸
n

, 1) = <>
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or
f ∗(0, 0, ..., 0︸ ︷︷ ︸

n

, 1) = (1, 1, ..., 1︸ ︷︷ ︸
k

),

for some k, monotonicity is clearly violated for (0, 0, ..., 0︸ ︷︷ ︸
n

) ≺ (0, 0, ..., 0︸ ︷︷ ︸
n

, 1).

It is easily seen though, that the standard injection Θ : N → C is intuitionistically
accepted (see the Appendix for the definition of Θ).

Proposition 9.2: If M is a non-empty spread, there is a retraction Θ : ωω → M i.e.,
an intuitionistic (ωω,M)-Function which is the identity on M70.

Proof: It suffices to define a function Θ∗ : ω<ω →M<ω, which is monotone, not finally
constant and calculates Θ.
Let (a1) any 1-sequence of natural numbers. We then define:

(a1)
Θ∗7→ (a1), if (a1) is ΛM -accepted.

(b1), if (a1) is not ΛM -accepted and (b1) ↪→ (a1),

where (b1) ↪→ (a1) means that (b1) is the most close to (a1) M -sequence in the following
sense: number b1 is the largest number of those numbers smaller than a1 such that (b1)
is M -accepted, or it is the smallest number of those larger than a1 such that (b1) is
M -accepted, if none of the numbers smaller than a1 does not form a ΛM -accepted 1-
sequence. Since ΛM is decidable and M is non-empty, the above procedure terminates
in finite time.
Let (a1, a2) any 2-sequence of natural numbers. We then define:

(a1, a2)
Θ∗7→ (a1, a2), if (a1, a2) is ΛM -accepted

(a1, b2), if (a1) is ΛM -accepted, (a1, a2) is not ΛM -accepted
and (b2) ↪→ (a2)

(b1, b2), if (a1) is not ΛM -accepted and (b1, b2) ↪→ (a1, a2),

where the expression (b2) ↪→ (a2) is interpreted as before for the ΛM -accepted sequence
(a1, b2). Also, expression (b1, b2) ↪→ (a1, a2) is interpreted through (b1) ↪→ (a1) and
(b2) ↪→ (a2) for the ΛM -accepted sequence (b1, b2).
Defining Θ∗ analogously on any sequence (a1, a2, ..., an) of natural numbers, we get the
desired Θ.�
Retraction Θ : ωω → M transfers properties of the universal spread to an arbitrary
spread M . As we have already said in Paragraph 6

CP (M) ∀α(α ∈ [M ])(∃N)(∀β,Nβ = Nα ⇒ ϕ(β) = ϕ(α))

is the continuity principle for an arbitrary spread M . Next proposition shows that
CP(M) is a consequence of continuity principle CP.

Proposition 9.3: CP ⇒ CP(M).

Proof: Each function ϕM defines the universal function ϕ = ϕM ◦Θ. Hence, CP
applied on ϕ,

∀α(α ∈ ωω)(∃N)(∀β,Nβ = Nα ⇒ ϕM ◦Θ(β) = ϕM ◦Θ(α)),

70Proposition 9.2 is trivially true in case M is the empty spread.

53



gives directly CP(M).�
Intuitionistic functions can be seen as a special kind of intuitionistic Functions. Let
Ω be the spread of all constant sequences n = (n, n, n, ...). Ω is a spread and not a
fan, since the root <> has infinitely many immediate successors. Then, we prove the
following proposition.

Proposition 9.4: (i) If ϕ : ωω → ω is an intuitionistic function, there is an intuitionistic
Function Fϕ : ωω → Ω, such that Fϕ(α) = ϕ(α).
(ii) If F : ωω → Ω is an intuitionistic Function, there is an intuitionistic function
ϕF : ωω → ω, such that ϕF (α) = n, if F (α) = n.

Proof: (i) Let α be a sequence in ωω. By CP on ϕ, there is some N , such that
Nα = Nβ ⇒ ϕ(α) = ϕ(β) = n, for each β in ωω. We then define F ∗ϕ by

F ∗ϕ(mα) =

 <> , if m < N
(n, n, ..., n︸ ︷︷ ︸

m

) , if m ≥ N

Obviously, F ∗ϕ is monotone, non-stagnant and computes Function Fϕ, satisfying Fϕ(α) =

ϕ(α).
(ii) If α is again a fixed sequence in ωω, let N be (for example) the first natural such
that F ∗(Nα) is a sequence other than the root. Let F ∗(Nα) = (n, n, ..., n︸ ︷︷ ︸

m

), for some

natural m. We then define ϕF (α) = n. Obviously, if β is any other sequence such that
Nβ = Nα, then F ∗(Nβ) = (n, n, ..., n︸ ︷︷ ︸

m

), and since β belongs to Ω, F (β) = F (α) = n and

ϕF (β) = ϕF (α) = n.�
Obviously,

ϕ = ϕFϕ ,

while Proposition 10.4(ii) shows that

CPF ⇒ CP.

Hence, it is no surprise that intuitionistic Function is instrumental to the proof of
negative continuity theorem of an intuitionistic function.
An external function ϕ : ωω → ω is a law which corresponds sequences to naturals
without any explication of how this is done. Of course, a classical function is an external
kind of function. Our concept of intuitionistic function ϕ is an internal function, since
ϕ, not only sends sequences to naturals, but also it is inherent to ϕ the way this
correspondence is established.
In [van Atten, van Dalen 2002], pp.341-2, we find the following proposition, the proof
of which is given without using CP:

Proposition 9.5 (Negative continuity theorem - without CP): There is no non-
continuous external function ϕ : ωω → ω.

Proof: We suppose that ϕ is non-continuous, without loss of generality on the constant
zero function 0, and ϕ(0) = 0. Thus, in order to extract a weak counterexample, we
have supposed that:
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(i) (∀N)(∃α)(Nα = N0 ∧ ϕ(α) 6= ϕ(0).
(ii) ϕ(0) = 0.

(i) results from the negation of continuity at 0 and expresses the fact each input N0 of 0,
cannot activate ϕ(0), since if it could, (i) would be violated. Therefore, our hypothesis
is equivalent to the following:

(I) None N0 activates ϕ(0).
(II) At the same moment ϕ(0) = 0.

Hence, ϕ is not an intuitionistic function, but an externally defined linguistic mapping
concept. For this external ϕ though, van Atten and van Dalen extract the following
weak counterexample:
Let αN the selected by (i) sequence a corresponding to N . Each αN has its N -segment
on the infinite branch 0 and at some successor node it branches off 0. We may assume
that αN+1 branches off later than αN . The following spread S is defined by

u ∈ S ⇔ (∃N) (u ∈ αN),

and the Function F : ωω → [S], computed by F ∗ : ωω → S, where

u 7→ ru,

and ru is the rightmost node of S to the left of u with the same length.
Obviously, u � v ⇒ ru � rv, since a successor of ru is closer to v, and F ∗ is non-stagnant.
Hence, F (α) = limnF

∗(nα). If we define

α]β ⇔ ∃i, α(i) 6= β(i)

i.e., a strong, positive kind of inequality of sequences (α]β ⇒ α 6= β, but not the
inverse), then:

(∗) (∀α)(α]0⇒ ϕ(F (α)) 6= 0).
(∗∗) (∀α)(ϕ(F (α)) 6= 0⇒ ¬¬α]0).

(∗): If α]0, then α branches off 0 at some node u, F (α) ∈ [S]− {0} and the value
ϕ(F (α)) 6= 0.
(∗∗): Since ¬(∃i, α(i) 6= 0)⇔ ∀i, α(i) = 0 i.e.,

¬α]0⇔ α = 0,

then F (α) = F (0) = 0, by the definition of F (0 ∈ [S]). Hence, ϕ(F (α)) = ϕ(F (0)) =
ϕ(0) = 0, which is by hypothesis absurd. Hence, ¬¬α]0 is proven. Since within BHK-
interpretation of quantifiers71

(P ⇒ Q)⇒ (¬Q⇒ ¬P ),

holds, but not the inverse, then applying the above scheme to (∗) and (∗∗), we get
ϕ(F (α)) = 0 ⇒ α = 0 and ¬¬¬α]0 ⇒ ϕ(F (α)) = 0 respectively. Since within BHK
though,

¬¬¬P ⇔ ¬P
71BHK stands for Brouwer, Heyting and Kolmogorov.
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also holds, we get α = 0⇒ ϕ(F (α)) = 0. Thus, finally we get

(∀α)(α = 0⇔ ϕ(F (α)) = 0).

But then,
(†) (∀α)(α = 0 ∨ α 6= 0),

since for each a, ϕ(F (α)) is effectively computed, and either ϕ(F (α)) = 0 i.e., α = 0,
or ϕ(F (α)) 6= 0 i.e., α 6= 0. (†) though, known as the weak limited of omniscience
(WLPO) or ∀PEM , is an intuitionistically unaccepted formula, by a standard Brouw-
erian counterexample.�
The above impossibility result owes its existence to Brouwer’s negative continuity the-
orem (Proposition 8.1) of real functions defined on the unit continuum. As we have
discussed in Paragraph 8, Brouwer had an internal concept of intuitionistic function in
his mind, while he worked with an external concept of a real Function i.e., a mapping
on point cores and values point cores. In Paragraph 8 we explained why this asymme-
try between intuitionistic functions and real Functions is problematic. In the case of a
function defined on sequences i.e., on on-going objects, or objects in time, the use of an
external, timeless concept of function is completely against Brouwer’s ideas. Of course,
Brouwer himself is not consistent to an internal concept of function when the values are
sequences too. In our opinion though, negative continuity theorems seem not that im-
portant to us, since they refer to a somehow classical concept of function. An external
ϕ functions in a magical linguistic way, exactly like a classical function. We believe that
a mapping on on-going objects should be influenced in its structure from the on-going
character of the objects on which it is applied. Also, if we want to create a constructive
theory of the continuum, then each mathematical object involved must correspond to
some construction. An externally defined function lacks constructive content. This is
the reason why we defined intuitionistic Functions Φ : ωω → ωω internally, in complete
analogy to intuitionistic functions ϕ : ωω → ω.

10. Well-ordered species and bars. Brouwer’s Fan theorem (BFT) is in the core
of intuitionistic analysis. Through BFT Brouwer managed to prove his (highly non-
classical) Uniform Continuity theorem (UCT). The proof of BFT not only determined
the character of Brouwer’s intuitionistic analysis (BIA), but also its post-Brouwer de-
velopment.
Brouwer’s first proof of BFT, in [Brouwer 1924a]72, appears two years before the proof
of König’s lemma, a proposition which is classically equivalent to BFT. As we have
already seen, König’s lemma is highly non-constructive, since it guarantees the logical
only existence of an infinite branch in an infinite fan. A genuine construction of the in-
finite branch seems impossible in a classical framework. Historically, the two theorems
are not related, though Fan theorem is usually mentioned as an outstanding example
of a proposition the intuitionistic proof of which preceded its classical proof.
The proof of BFT that we present here is in [Brouwer 1927]73. BFT is the following
proposition:

72First suggested in [Brouwer 1923c] inconclusively.
73This is the most “standard” one, the other two proofs are found in [Brouwer 1924a], as we have

already mentioned, and in [Brouwer 1954]. Heyting’s proof of BFT found in [Heyting 1956] is based
on [Brouwer 1924a] proof.
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Brouwer’s Fan theorem: If T is a fan and ϕ : T → ω an intuitionistic function, then
there exists a natural N , such that, for each infinite T -sequence α, its value ϕ(α) is
determined by its initial segment Nα. I.e.,

(∗) ∃N∀α(α ∈ [T ])(ϕ(α) = ϕ∗(Nα))

By Continuity Principle on a fan T , which is a (finitely branching) spread, we get

(∗∗) ∀α(α ∈ [T ])(∃N)(∀β,Nβ = Nα ⇒ ϕ(β) = ϕ(α))

The interchange of quantifiers in (∗) and (∗∗) is the same to the interchange of quanti-
fiers in the definitions of uniform continuity (1) and continuity (2) of a classical function
f : X → R, where X ⊆ R and R is the classical set of real numbers. I.e., for each ε > 0:

(1) (∃δ)(∀x)(∀y)(|x− y| < δ ⇒ |f(x)− f(y)| < ε,

(2) (∀x)(∃δ)(∀y)(|x− y| < δ ⇒ |f(x)− f(y)| < ε.

This fact is not accidental, since, as we said at the beginning, BFT is a central tool in
Brouwer’s proof of UCT.
While CP(T) for a fan T expresses the fact that an initial segment Nα of a choice
sequence α determines the value ϕ(α), where ϕ : T → ω is an intuitionistic function,
and that N is constructively given by the way ϕ is defined, BFT expresses a “global”
version of CP. According to BFT, a natural number N can constructively be found such
that the N -initial segment of each choice T -sequence α determines its value ϕ(α).

BFT taken verbatim does not hold classically.

Consider, for example, the function ϕ : C → ω, computed by the following ϕ∗ : 2<ω → ω:

ϕ∗(1) = 1
ϕ∗(0, 1) = 2

. . . . . . . . . . .
ϕ∗(0, 0, ..., 0︸ ︷︷ ︸

n

, 1) = n+ 1

. . . . . . . . . . .
ϕ(0) = 0

C is a fan and ϕ is a classically accepted function on C which cannot be determined
by a global bound N . Although ϕ is “algorithmically” defined on Cantor space C, it is
not C-continuous at the zero sequence 0, since the non-zero sequences that extend the
initial segment 0, 0, ..., 0︸ ︷︷ ︸

n

have C-distance < 1
n
, while their values under ϕ have distance

≥ 1. But ϕ is not an intuitionistic, since its value on 0 is not determined by any of its
initial segments. The essential difference between 2ω and C is that C-sequences, like 0,
have an existence independent from their generation, while 2ω-sequences exist only as
Λ2ω -procedures.

BFT though, holds classically if it is understood as follows: Each continuous func-
tion on a fan is uniformly continuous. The above function ϕ violates BFT but
also CP i.e., it is not even continuous. If we restrict to the fan C, BFT(C) expresses
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that each continuous function on C is uniformly continuous. If f : C → N, the uniform
continuity property of them becomes

(∃N)(∀α, β) Nα = Nβ ⇒ f(α) = f(β),

as we show in the Appendix. Thus, BFT directly expresses the uniform continuity of
an f : C → N, if we interpret the binary fan and the species of naturals classically.

Usually, as for example in [Kleene, Vesley 1965], the CP is treated as the only purely
intuitionistic principle. That is why CP is presented in [Kleene, Vesley 1965] last, after
Bar induction, which is in Kleene’s system an axiom necessary for the proof of fan the-
orem, and classically valid. Actually, Kleene, in [Kleene 1969], defined a formal system
which gives classical analysis, if the PEM is added to it, and also Kleene’s intuitionistic
analysis (FIM), if a form of CP is added to it.
Our approach differs crucially from that of Kleene. Firstly, according to our need to
reconstruct Brouwer’s intuitionism and reveal its relevance to a general constructive
spirit, we present Brouwer’s original non-classical theorem. Secondly, while CP is an
immediate consequence of the intuitionistic function concept, BFT is a highly non-
trivial intuitionistic truth, which begs a genuine intuitionistic proof, by the analysis of
the concepts involved in its formulation, as in the proof of CP, and not a simple deriva-
tion from an axiom like bar induction. Also, it should follow CP since it presupposes
the concept of an intuitionistic function.

Before giving Brouwer’s proof we need to define some new concepts and prove some
simple results on them.

Classically, a well-ordered set Ω is an ordered set such that each non-empty subset of
Ω has a first element. The following weak counterexample shows why this concept fails
from the standard intuitionistic point of view.
Let Ω = {0, 1}, where 0 < 1 and A = {n = 0 | P ∨ ¬P}, where P is open i.e., it is not
known neither if P nor ¬P is true. Obviously, A is a subspecies of {0, 1}. If A is the
empty species, then we get ¬P ∨ ¬P , which is absurd, since within BHK ¬¬(P ∨ ¬P )
can be proven. If A is {0}, then we get P ∨ ¬P , which intuitionistically means that P
is known to be true, or that ¬P is known to be true, contradicting our hypothesis on
P . Therefore, we cannot determine the first element of A, which is necessary to assert,
intuitionistically, that A has a first element.
Brouwer, following some original ideas of Cantor on well-ordering, defined in his dis-
sertation the well-ordered sets as the sets generated by singletons and then new well-
ordered sets are constructed by “putting together” finite or potentially infinite sequences
of already constructed well-ordered sets. Their conceptual justification was based on
the at most ω-repetition of the same operation.
Before we give the inductive definition of Brouwer’s well-ordered species, a concept of
Brouwer’s mature period which replaced that of well-ordered set from his early period,
we need to define the union of species.

The (intuitionistic) union E ∨ Z of already constructed species E, Z is the species of
objects a satisfying the disjunction

(α ∈ E) ∨ (α ∈ Z)

i.e., an element a satisfies (or “belongs to”) the species E ∨ Z iff we know that one of
the two terms of the disjunction is satisfied by a.
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In a similar way, the intuitionistic (potentially) infinite union
∨∞
i=1Ei of a sequence of

already constructed species E1, E2, ..., En, ..., given, as a sequence, in an intuitionisti-
cally accepted way, is defined as the species of objects a satisfying

α ∈
∞∨
i=1

Ei ↔ (α ∈ E1) ∨ ... ∨ (α ∈ En) ∨ ...

i.e., an element a satisfies (or “belongs to”) the species
∨∞
i=1Ei iff we know that one of

the infinite terms of the disjunction is satisfied by a.

The intuitionistic conjunction E ∧Z of already constructed species E, Z is the species
of objects a satisfying the conjunction

(α ∈ E) ∧ (α ∈ Z)

i.e., an element a satisfies (or “belongs to”) the species E ∧Z iff we know that both of
the two terms of the conjunction are satisfied by a.
In a similar way the intuitionistic (potentially) infinite conjunction

∧∞
i=1Ei of a se-

quence of already constructed species E1, E2, ..., En, ..., given, as a sequence, in an
intuitionistically accepted way, is defined as the species of objects a satisfying

α ∈
∞∧
i=1

Ei ↔ (α ∈ E1) ∧ ... ∧ (α ∈ En) ∧ ...

i.e., an element a satisfies (or “belongs to”) the species
∧∞
i=1Ei iff we know that each

of the infinite terms of the conjunction is satisfied by a.

A well-ordered species (w.o.s) A is defined inductively as follows:
(i) if A is one-element species, then it is a w.o.s. The element of an one-element species
is a natural number or an element of some decidable species i.e., a species for which
there is an effective answer to the question whether α ∈ A or α /∈ A. Here we use an
informal concept of an effective procedure.
(ii) if A1, A2, ..., An are disjoint74 w.o.s, then their ordered sum

⊕n
i=1Ai is a w.o.s, where⊕n

i=1Ai is the union of Ai such that, each Ai preserves its order and j < k, then a ≺ b,
for a ∈ Aj and b ∈ Ak.
(iii) if A1, A2, ..., An, ..., is a constructively given (i.e., given through an algorithm75)
sequence of disjoint w.o.s, then their infinite ordered sum

⊕∞
i=1Ai is a w.o.s, where⊕∞

i=1Ai is defined analogously.

Hence, a non-trivial w.o.s is a structure of the form

n⊕
i=1

Ai = (
n∨
i=1

Ai,≺),

or of the form
∞⊕
i=1

Ai = (
∞∨
i=1

Ai,≺).

74Two species E,Z are called disjoint if we have shown the impossibility for an object a to belong
to both E and Z.

75Hence, the sequence of Ai’s is not an on-going object.
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By the definition of union, in the case of the sum
⊕n

i=1 Ai,

α ∈
n⊕
i=1

Ai ↔ (α ∈ A1) ∨ ... ∨ (α ∈ An)

i.e., α ∈
⊕n

i=1Ai iff we know in which Ai α belongs to.
Also, in the case of the infinite sum

⊕∞
i=1Ai we mean that

α ∈
∞⊕
i=1

Ai ↔ (α ∈ A1) ∨ ... ∨ (α ∈ An) ∨ ...

i.e., α ∈
⊕∞

i=1Ai iff we know in which Ai α belongs to.

Note that, as in any definition of a Brouwerian concept, the definition of a w.o.s refers
to a certain construction. A well-ordered species corresponds to a certain executed
construction of the mind.
A w.o.s of first kind is a w.o.s formed by one-element species and finite only ordered
sums, while a w.o.s of second kind is a w.o.s formed by infinite ordered sums too. E.g.,
ω itself is a w.o.s with its natural order and it can be seen as the infinite sum

⊕∞
i=1{i},

where {i} is the one-element w.o.s of the natural number i. In analogy to the definition
of countable ordinals we get the following types of w.o.s of the second kind.
If A is a w.o.s of the form

⊕∞
i=1Ai, such that each Ai is an one-element species, it is

called a w.o.s of ω-type. A w.o.s Ω is of ω+1-type iff Ω = A
⊕
{a}, where A =

⊕∞
i=1{ai}

is a w.o.s of ω-type and a 6= ai, for each i. Similarly we define w.o.s of ω+ 2, ω+ 3-type
etc., and ω+ω or ω2-type, if Ω = A

⊕
B, where A,B are of ω-type and the appropriate

disjointness condition is satisfied. Similarly w.o.s of ω3-type are defined and going on
like that of ω2-type iff Ω =

⊕∞
i=1 Ai, where Ai is a w.o.s of ω-type and the appropriate

disjointness condition is satisfied. Going on like that, we can define w.o.s of ω2 + ω,
ω2 + ω2, ..., ω2 + ω2 = ω22-type and then of ω3, ω4, ..., ωω, ..., ωω

ω
, ..., ε0-type.

Let α be a choice sequence of a spread M such that αi 6= αj. The terms of α do not
follow necessarily a preexisted law of generation, since M can be a subjective spread.
Let Ai = {αi}. Then, we cannot talk of the w.o.s A =

⊕∞
i=1Ai =

⊕∞
i=1{αi}, since the

sequence of Ai’s is not given through an algorithm.

To the above inductive definition corresponds naturally the following inductive scheme.

Proposition 10.1 (induction scheme of w.o.s, IWOS): Let P a constructively
accepted property on well-ordered species A, satisfying the following conditions:
(i) If A is an one-element w.o.s, then P(A) i.e., A satisfies property P .
(ii) If A =

⊕n
i=1 Ai and for each i from 1 to n, P(Ai), then P(A).

(iii) If A =
⊕∞

i=1Ai and for each i, P(Ai), then P(A).
Then, for each w.o.s A, A satisfies P i.e., intuitionistically understood

(∀A)P(A).

Proof: Let A be a given w.o.s. That means that we have enough information in order
to fully describe the ordinal tree TA corresponding to A. Each branch of TA is finite (al-
though TA is not, in general, a fan) and its end nodes are one-element species on which
P holds. Going upwards from the end nodes to A, we do so through finite or infinite
direct sums and consequently P is transferred from the one-element species up to A.
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The above procedure is effective, since the sequences of w.o.s are given effectively.�
We can now prove inductively the following propositions.

Proposition 10.2: If A is a w.o.s such that α ∈ A, then there is a w.o.s B constituent
in the structure of A i.e., a building block sub-species of A, such that α ∈ B.

Proof: If A is an one-element species, then B = A. If A =
⊕n

i=1Ai, or if A =
⊕∞

i=1 Ai,
then by the definition of finite or infinite ordered sums and the intuitionistic interpreta-
tion of finite or infinite disjunctions, there is some i such that α ∈ Ai, therefore B = Ai.
By IWOS, the conclusion runs through all w.o.s A.

Proposition 10.3: If A is a w.o.s, then A has a first element.

Proof: If A is an one-element species, then the first element exists in a trivial manner.
If A =

⊕n
i=1Ai, such that each Ai has a first element, then the first element of A is the

first element of A1. Similarly, in case A =
⊕∞

i=1Ai.�
As we have shown at the beginning of this paragraph, we cannot say that any subspecies
of a w.o.s A has a first element i.e., a w.o.s doesn’t satisfy the classical definition of a
well-ordered set. A itself though, always has one.

Proposition 10.4: If A is a w.o.s and α ∈ A, then α has an immediate descendant or
α is a last element i.e., there is no element of A larger than α.

Proof: If A = {α}, then α is a last element. If A =
⊕n

i=1Ai and each Ai satisfies
the inductive hypothesis, then α ∈ A means that α ∈ Ai, for some i, therefore, the
proposition holds. Similarly, if A =

⊕∞
i=1Ai.�

Proposition 10.5: (i) If A is a w.o.s of first kind i.e., a w.o.s formed by one-element
species, where these elements satisfy a decidable equality relation, and finite only or-
dered sums, then A is decidable, if its summands are decidable species.
(ii) If A is a w.o.s of second kind, then A is semi-decidable i.e., there is an effective
answer to the question α ∈ A and not to the question α /∈ A, if each summand is a
decidable species (MP)76.

Proof: (i) If A is an one-element species, then A is decidable, since the equality of the
elements of the one-element species is decidable. If A =

⊕n
i=1Ai and each Ai is decid-

able, then if α is an appropriate object, i.e., an object for which the question α ∈ Ai’s
or not is meaningful, then we apply the effective method of Ai to α. Since Ai are finite
in number, then the above procedure is effective to the whole of A.
(ii) In case A =

⊕∞
i=1Ai the above method is effective only regarding the answer to the

question α ∈ A, and only if we accept as “effective” the following procedure. If α is an
object for which the question α ∈ Ai’s or not is meaningful, then if α turns out to be
in A, then that will be known in finite time, since at some i the question α ∈ Ai will
be answered positively. If α is not in A, then we cannot be sure of it at any finite time,
since checking α ∈ Ai or not takes infinite time.
If one accepts the effectiveness of the above method, then he accepts the existence of

76If this result is accepted, then one has to accept Markov’s principle (MP)

¬¬∃nA(n)⇒ ∃nA(n).

Intuitionistically though,this semi-decidability is not accepted for the same reasons MP is not accepted,
since “waiting”-arguments are not intuitionistically accepted.
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that i without being able to determine a bound of time in which this i will be found. In-
tuitionistically it is impossible not to exist such an i, but strong intuitionistic existence
of i is not justified, since it cannot be specified a finite interval in which i is certainly
found.�
Next proposition is a partial inverse.

Proposition 10.6: If w.o.s A =
⊕n

i=1Ai, or A =
⊕∞

i=1Ai, is decidable, then each
w.o.s Ai is decidable.

Proof: Let α be an appropriate object and Ai a fixed summand. Applying the effective
method of A on α we get α /∈ A or α ∈ A. If α /∈ A, then α /∈ Ai, since if α ∈ Ai, then
α ∈ A, which is absurd. If α ∈ A, then there is some j, such that α ∈ Aj. Aj is unique,
since Ai’s are disjoint. If i = j, then α ∈ Ai, while if i 6= j, then α /∈ Ai.
Thus, in any case we decide effectively if α belongs to Ai or not.�
Proposition 10.7: If A is a w.o.s, then A is a finite or countably infinite species.
Moreover, a w.o.s of first kind is finite, while a w.o.s of second kind is countably infi-
nite.

Proof: If A = {α}, then it is finite, while if A =
⊕n

i=1 Ai and each Ai is finite or
countably infinite, the same is true for A. If A =

⊕∞
i=1Ai, then A is countably infinite

as a countable union of (disjoint) countably infinite or finite species.�
Proposition 10.8: If B is a decidable subspecies of a decidable w.o.s A, then B is also
a w.o.s.

Proof: If A = {α}, then its only subspecies are itself and the empty species. If
A =

⊕n
i=1Ai and B is a decidable subspecies of A, then the decidable subspecies

Bi of Ai are defined, where Bi = B ∧ Ai. Obviously, B =
⊕n

i=1Bi. Likewise, if
A =

⊕∞
i=1 Ai.�

A bar B for a spread M is a species of finite M -sequences such that, each infinite
M -sequence α has an initial segment in B or hits the bar i.e.,

∀α(α ∈M)(∃n)(nα ∈ B).

The above defining property of a bar B does not determine a new species but it presup-
poses an already constructed species B for which there is a constructive proof of that
property. It is only then that we can safely say that B is a bar for a spread M .
A trivial example of a bar for a spread M is the species of all finite M -sequences, which
we call the universal bar for M . If ϕ : M → ω is an M -intuitionistic function, the
species Bϕ of critical for ϕ nodes is called the ϕ-bar, or the bar of ϕ, and it is the
species of those M -nodes which activate ϕ∗.
A ϕ-bar is monotone i.e.,

u ∈ Bϕ, u ≺ v ⇒ v ∈ Bϕ.

Since ϕ is defined on [M ], each M -sequence cuts Bϕ in each node critical for ϕ. Bϕ

contains all the information on ϕ, since it hods together those nodes which activate ϕ∗.
As Dummett accurately remarks (in [Dummett 2000] p.49)

[... although “every element of a spread is an infinite choice sequence, we
can nevertheless get the effect of all paths terminating by supposing that
there is some species B of finite sequences which bars the vertex”.]
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To show that a species of M -nodes is a bar is, generally, far from trivial. In order
to do that we have to construct for each α in M a natural number N , which is the
length of the initial segment of α in B. In that way an intuitionistic property R(α, n)
is constructed such that R(α, n) iff nα ∈ B. R(α, n) is decidable i.e., we know that
n satisfies R(α, n) or not iff B is decidable. A decidable bar is one for which there is
a method to say in finite time whether a finite M -sequence is in the bar or not. The
decidability of B is not entailed in its definition. The universal bar is decidable, since
ΛM is decidable. Also, a ϕ-bar is decidable, since the mechanism of ϕ∗ decides if an
M -node is critical or not. Conversely, if B is a decidable and monotone M -bar and
ϕ
′
: B → ω, such that:

if u, v ∈ B, u � v ⇒ ϕ
′
(u) = ϕ

′
(v),

then ϕ
′

is extended to a function ϕ : M → ω, where the value of a sequence α under ϕ
is the value ϕ

′
(u), where α cuts B in u. In that way B becomes the bar of ϕ.

Decidability of a bar B is, in our view, connected to a “serious” knowledge of species
B, and it is not surprise to us that lack of decidability of a bar B has non-desired
consequences (see Kleene’s counterexample to Brouwer’s bar theorem in Paragraph
13).
The non-trivial part of proving a species of M -nodes to be a bar is that we have to
find a uniform way of understanding [M ] in order to show the bar property for each
sequence in [M ]. There is an infinite character in the expression “each sequence in [M ]”
which has to be grasped finitely.
An M -bar B is called thin iff B contains only the elements necessary to be a bar i.e.,

(u ∈ B) ∧ (v ≺ u)⇒ v /∈ B.

Hence, in a thin bar there is no pair of comparable nodes, and by the intuitionistic
interpretation of quantifiers in the definition of a bar, there is an intuitionistic function
ϕ : M → ω defined by α 7→ l(u), where u is the unique initial segment of α which cuts
B. If ωk is the species of finite sequences of length k, then ωk is a thin bar for the
universal spread ωω. Also, if ϕ : M → ω is an intuitionistic function, the species B0ϕ

of least critical nodes for ϕ∗ i.e., of those nodes which activate ϕ∗ for the first time, is
a thin bar for M .

If B is a bar for spread M , a sub-bar C of B, C ≺ B, is a subspecies of B which is also
a bar for M . For example, the thin bar B0ϕ is a sub-bar of Bϕ.

Proposition 10.9: A decidable bar M for spread M includes always a distinguished
thin decidable sub-bar B0, which we call the least thin sub-bar of B. Also, it is impos-
sible for two thin sub-bars of B to be proper sub-species of each other.

Proof: If u is an element of bar B, we can find in finite time, due to the decidability
of B, the ancestor u0 of u which has the least length (≥ 1) among those ancestors of u
which belong to B. The species B0 of those nodes u0 is a thin sub-bar of B.
If B1, B2 two thin sub-bars of bar B such that B1 ≺ B2, and u ∈ B2 ∧ u /∈ B1, then u
has an infinite M -extension α which cuts B1 at some nα. Obviously, nα 6= u, otherwise
u would belong to B1 too. Hence, in B2 the comparable nodes u, nα coexist, which is
absurd.�
The universal bar of the spread ωω has the species ωk as infinite in number thin bars,
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none of which is, trivially, sub-species of each other. Its distinguished thin bar is ω1.

11. Brouwer’s proof of Fan theorem through Bar theorem. BFT is invalid
in case a spread which is not a fan is considered. E.g., the intuitionistic function
ϕ : ωω → ω defined by

ϕ(α) = α(α(0))

violates BF(ωω), since α(0) can be any natural number n, therefore

ϕ(α) = α(n).

No N -initial segment though, of any sequence α can include the arbitrarily large term
α(n). This counterexample is extended to any spread which is not a fan (see Proposi-
tion 12.3).
Hence, the proof of BFT has to reveal that fundamental difference between a fan and
a spread which is not a fan, which is responsible for the validity of BFT on fans and
not on non-fans spreads.

Brouwer’s proof of BFT has a special feature, which is responsible for not being as-
similated in his era. This special feature has to do with the use of the intuitionistic
interpretation of implication in the proof itself.
With respect to BHK interpretation of logical constants the proof of an implication

P ⇒ Q

is interpreted as a constructive method transforming a proof of P to a proof of Q. I.e.,
in contrast to its classical interpretation, P ⇒ Q is interpreted as follows:

If K(P ) is a supposable construction-proof of P , then P ⇒ Q is a constructive method
transforming K(P ) to a construction-proof K(Q) of Q.

Hence, hypothesis P in P ⇒ Q is intuitionistically richer in content than in classical
P ⇒ Q. P doesn’t only express fact P , but also construction K(P ), without which P
is only a linguistic hypothesis.
Generally, a proof of an intuitionistic theorem, which is, as any theorem, an implication
P ⇒ Q, takes into account only the fact P , without intervention of K(P ) in it. In the
proof of BFT though, Brouwer employees K(P ). The structure of supposable K(P ) is
essential to the derivation of K(Q). There is a certain ambiguity though, in the term
supposable construction K(P ) of P .

K(P ) is
(I) either a construction which has already been done, or
(II) a construction which can be done, but not necessarily already done.

The difference between these two interpretations of K(P ) is actually the object of a
disagreement between Freudenthal and Heyting (see [Petrakis 2010]).

Brouwer’s proof of BFT interprets K(P ) as in (II) and proves Q in the implication
P ⇒ Q of BFT analyzing the supposable construction K(P ).

Brouwer proves BFT through his Bar theorem. We need to give some definitions first.
If B is a decidable bar for a spread M and B0 is the distinguished thin sub-bar of B, a
node u is called secured with respect to M iff

(∃v � u, v ∈ B0) ∨ u /∈M
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i.e., if we know with certainty the relation of u to B0. Either u has an ancestor in B0,
which is compatible to u /∈ M i.e., the above disjunction is not exclusive, or, knowing
that u /∈M , no descendant of u cuts B0, since otherwise u would be an M -node as an
ancestor of an M -node. By decidability of B0 and ΛM the secured property of a node
is decidable. Also, a node v is called non-secured iff v ∈M but it doesn’t cut B0 yet.
If ∆ is a decidable species of M -nodes, then an M -node u is called ∆-securable iff each
infinite M -sequence extending u cuts ∆. I.e., if α � u, then there is a natural number
n, such that nα ∈ ∆.

Proposition 11.1: If B is a species of M -nodes, where M is a spread, the following
are equivalent:
(i) B is a decidable bar for M .
(ii) Root <> is B-securable.

Proof: (i)⇒ (ii) Since B is a decidable bar for M , if α is any M -sequence extending
<>, i.e, any M -choice sequence, then α cuts B, by the definition of a bar.
(ii)⇒ (i) If <> is B-securable, then each infinite M -sequence cuts B, therefore B is a
bar.�
Obviously, if species ∆ is a bar, it has no meaning to talk about a non B-securable
node u.

Brouwer’s Bar theorem is the following proposition with the addition of the decidability
of bar. As Kleene showed (see Paragraph 13) the decidability condition, that Brouwer
didn’t mention, is necessary. Decidability condition is also necessary for intrinsic to the
understanding of the concept of species reasons.

Brouwer’s Bar theorem (BBT1): If B is a decidable bar for a spread M (this is
hypothesis P of BBT1), then B contains a well-ordered thin sub-bar (this is conclusion
Q of BBT1).

By Proposition 11.1, Brouwer proves the following version of Bar theorem:

Brouwer’s Bar theorem (BBT2): If B is a decidable species of M -nodes, where M
is a spread, such that the root is B-securable (this is hypothesis P

′
of BBT2), then B

contains a well-ordered thin sub-bar (this is conclusion Q of BBT2).

The essence of Brouwer’s proof of BBT2 lies in his effort to give a constructive meaning
to the universal quantification on infinite choice sequences. Hypothesis P

′
expresses

the fact that each infinite M -choice sequence cuts B i.e., it has the form: (∀α ∈ M)
A(α). Of course A is an intuitionistic predicate, since α cutting B is activated by an
initial segment of α. Since BBT2 is actually an implication, its BHK-interpretation is
the following:

If R<> is a supposable constructive proof of B-securability of the root <>, then by R<>

a well-ordered thin bar b0 is constructed.

Since the structure of proof R<> is essential to the proof of BBT2, and since there
are in general indefinite number of possible proofs R<>, Brouwer is forced to make a
fundamental assumption on the structure of such a proof R<> in order to tame their
initial indefinite multiplicity. This fundamental assumption of Brouwer was named by
Martino and Giaretta, in [Martino, Giaretta 1979], as Brouwer’s dogma:

Brouwer’s Dogma (BD): If B is a bar for a spread M , then a proof Ru, of the fact “u
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is B-securable”, can be reduced to a canonical proof (c.p.)77, where only the following
kinds of inference occur:

u secured
u securable

, η-inference

(a1,a2,...,an) securable
(a1,a2,...,an,k) securable

, ζ-inference

(a1,a2,...,an,1) securable, (a1,a2,...,an,2) securable,....
(a1,a2,...,an) securable

, z-inference

An η-inference expresses the securability of a secured node u. An η-inference is triv-
ially correct, since, if u has already cut B, then each infinite M -extension of u has cut
B too, while if u /∈M , then there is no such thing as an infinite M -extension of u, and
securability of u holds in a trivial way.
A ζ-inference expresses the securability of a node (a1, a2, ..., an, k) if its immediate an-
cestor (a1, a2, ..., an) is securable. Clearly, it is also a correct inference, since each infinite
M -extension of (a1, a2, ..., an, k) is an infinite M -extension of (a1, a2, ..., an), therefore it
cuts B at some point of its generation.
A z-inference expresses the securability of a node (a1, a2, ..., an) when each immediate
descendant (a1, a2, ..., an, k), k ∈ ω, of (a1, a2, ..., an) is securable. A z-inference is a
correct inference, since each infinite M -extension α of (a1, a2, ..., an) is an extension of
some (a1, a2, ..., an, k), hence, if (a1, a2, ..., an, k) is securable, then α cuts B at some
point. In a z-inference k in descendants (a1, a2, ..., an, k) is any natural number. Even
if the node (a1, a2, ..., an, k) is not M -accepted, the securability of (a1, a2, ..., an, k) is de-
rived from an η-inference. The inclusion in a z-inference of all nodes (a1, a2, ..., an, k)
and not only of the M -accepted nodes (a1, a2, ..., an, k) permits the formulation of a
z-inference without knowing the sequence of natural numbers k which extend the node
(a1, a2, ..., an).
Essential to a z-inference is the infinity of its premises, which is understood though,
from the intuitionistic point of view. I.e., through an effective way to find a proof of
the fact that (a1, a2, ..., an, k) is securable, for each k.
A stronger interpretation of the above effective method is to understand dots in a
z-inference as a common method of proving its premises i.e., as a common method
generating each of these subproofs of the securability of (a1, a2, ..., an, k). In this case
the knowledge of the sequence of k’s extending (a1, a2, ..., an) is needed.
If the spread M in question is a fan, then a z-inference has a more concrete structure,
since we take into account only those finite in number nodes (a1, a2, ..., an, ki which
extend (a1, a2, ..., an), and which can be found in finite time by the definition of ΛM . In
the fan case a z-inference then becomes:

(a1,a2,...,an,k1) securable, (a1,a2,...,an,k2) securable,...,(a1,a2,...,an,km) securable
(a1,a2,...,an) securable

,

where k1, k2, ..., km are the immediate successors of (a1, a2, ..., an)78.

While η, ζ and z-inferences are correct inferences, what is far from trivial in BD is
Brouwer’s assumption that these are the only inferences on which one can count in or-
der to construct proof Ru. This crucial point in Brouwer’s argumentation is discussed

77A formal definition of a canonical proof is given in Paragraph 14.
78We call a natural number k immediate successor of a node (a1, a2, ..., an) if the node

(a1, a2, ..., an, k) is an immediate successor node of (a1, a2, ..., an).
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from the epistemological and mathematical point of view in Paragraph 14. It suffices
to say here that Brouwer considered BD an intuitionistic truth of which he never found
a complete justification. The “evidence” of BD is of course questioned in the literature.
An informal and partial justification of BD consists in the following arguments:

(I) At first we only know decidable species B, and we immediately get securability of
all nodes which belong to B or extend nodes which belong to B, through η-inferences.
(II) Nodes are connected with successive applications of immediate ancestor and de-
scendant relations. It seems that the only way to connect the known securability of a
node u1 with the in question securability of a node u2, is to go from u1 to u2 through
successive immediate descendants of u1 i.e., through ζ-inferences, or through successive
immediate ancestors of u1 i.e., through z-inferences.

Some definitions are needed before starting proving BBT2.

If B is a bar for spread M , a securable node u has the well-ordering property for nodes
(w.o.p.n) iff the thin bar Bu

0 � B0 which bars exactly the M -sequences which extend u
is a w.o.s. I.e., subspecies Bu

0 of B0 which lies “in front” of u is a w.o.s.
If a node u satisfies w.o.p.n, then the conclusion of BBT2 is “locally” established, since
Bu

0 is locally thin sub-bar and also a w.o.s. We note that since B in BBT1 is a decidable
bar, Bu

0 is a decidable subspecies of B0. And this is the case because B is decidable,
therefore B0 is decidable, and the question if v ∈ B0 extends u or not is of course
decidable.
A subproof R of proof Ru has the well-ordering property of canonical proofs (w.o.p.p)
iff the conclusions in R i.e., each node v the securability of which is proved in R, has
the w.o.p.n. for nodes. Obviously, w.o.p.p expresses a more global approximation of
BBT2’s conclusion. Not only for one node v, but for each node v proven to be secure
in R, we know that thin Bv

0 is a w.o.s.
A subproof R of proof Ru has the preservation property of canonical proofs (p.p.p) iff
each conclusion v in R has the w.o.p.n, whenever each node w the securability of which
is a premiss in some inference in R has the w.o.p.n. I.e., a subproof R satisfying p.p.p
preserves the w.o.p.n from its premisses nodes to its conclusion nodes.

Then, Brouwer proves the following propositions:

Proposition 11.2: Ru has the preservation property of canonical proofs.

Proof: We need to show that each conclusion in proof Ru of the securability of node u
has the w.o.p.n, whenever each node in some inference in Ru has the w.o.p.n. Because
of BD, we prove this for the three only possible kinds of inferences in canonical proof
Ru.
(I) If an η-inference,

v secured
v securable

,

has been used in Ru and the node v of its hypothesis satisfies the w.o.p.n, then the
conclusion node trivially satisfies the w.o.p.n, since the conclusion node is v again.

(II) If a ζ-inference,

(a1,a2,...,an) securable
(a1,a2,...,an,k) securable

,

has been used in Ru, and by hypothesis the subspecies B
(a1,a2,...,an)
0 of the thin bar

B0 which lies in front of (a1, a2, ..., an) is a w.o.s, we want to prove that the species
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B
(a1,a2,...,an,k)
0 in front of (a1, a2, ..., an, k) is also a w.o.s. The implication

(∗) B
(a1,a2,...,an)
0 w.o.s⇒ B

(a1,a2,...,an,k)
0 w.o.s

is proved inductively using IWOS.

The interesting case of (∗) is that node w = (a1, a2, ..., an) is securable and not secured,
but we first check the secured case.
If w is secured, then,
(i) w has an ancestor w0 in B0: then, w a k is also secured, therefore securable, through
an η-inference.
The same thought applies if w belongs to B0: in the first case Bw

0 = {w0}, where Bw
0 is

“in front” of w directed to the root, while in the second, Bw
0 = {w}. In both cases, Bw

0

is an one element w.o.s and correspondingly Bwak
0 = Bw

0 = {w0}, or Bwak
0 = Bw

0 = {w}
i.e., Bwak

0 is a w.o.s.
(ii) w /∈M : Then, of course, w a k /∈M too. Since Bw

0 is the empty species, implica-
tion (∗) holds trivially.
Suppose now that node w is securable and not secured. Then, subspecies Bw

0 is in
front of w, and it is a w.o.s.
(i) If Bw

0 = {w0}, then Bwak
0 = Bw

0 = {w0} i.e., Bwak
0 is an one-element w.o.s.

(ii) If Bw
0 =

⊕m
i=1 Ai, where Ai are w.o.s, then

Bwak
0 =

m⊕
i=1

Γi,

where
Γi = Ai ∧Bwak

0 .

Since Bw
0 is a decidable w.o.s, then by Proposition 10.6, each Ai is decidable, hence,

each Γi is decidable too, as the conjunction of two decidable species. Hence, each Γi, as
a decidable subspecies of decidable w.o.s Ai, is also a w.o.s, by Proposition 10.8. Then,
Bwak

0 is a w.o.s, as the finite ordered sum of w.o.s Γi.
(iii) If Bw

0 =
⊕∞

i=1Ai, where Ai are w.o.s, then Bwak
0 =

⊕m
i=1 Γi, where Γi = Ai ∧Bwak

0

and Bwak
0 is a w.o.s, as the infinite ordered sum of w.o.s Γi, using exactly the same line

of thought as in case (ii).

(III) If a z-inference

(a1,a2,...,an,1) securable, (a1,a2,...,an,2) securable,....
(a1,a2,...,an) securable

has been used in Ru, and by hypothesis, the subspecies B
(a1,a2,...,an,k)
0 of the thin bar B0

which lies in front of (a1, a2, ..., an, k) is a w.o.s, for each k, we need to prove that the

species B
(a1,a2,...,an)
0 in front of (a1, a2, ..., an) is also a w.o.s. As in the general case of a

z-inference, we suppose a uniform method of proof that each node (a1, a2, ..., an, k) is

securable, we also suppose a uniform method of proof that each species B
(a1,a2,...,an,k)
0 is

a w.o.s.
If again we set w = (a1, a2, ..., an), we examine the following cases:
(i) If node w a k is securable because it is secured, then either
w a k has an ancestor in B0, hence Bwak

0 = Bw
0 = {w0}, which is an one-element w.o.s

and there is nothing else to prove, or w a k belongs to B0, hence Bwak
0 = {w a k}, or
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w a k /∈ M , hence there are no nodes of B0 in front of w a k, otherwise w a k ∈ M .
In this trivial case we set Bwak

0 = {k}, to avoid Bwak
0 seen as an empty species.

(ii) Suppose now that node w a k is securable without being secured.

We prove now that all these possible w.o.s Bwak
0 are disjoint to each other i.e., if w a k

and w a λ two immediate successor nodes of w, such that k 6= λ, then

(∗∗) Bwak
0 ∧Bwaλ

0 = ∅,

where ∅ denotes the empty species.
If Bwak

0 and Bwaλ
0 are one-element species, then Bwak

0 = {k} or Bwak
0 = {w a k} and

Bwaλ
0 = {λ} or Bwaλ

0 = {w a λ}. In any case then, (∗∗) is satisfied. Also two nodes of
type (ii), which cannot be one-element species, satisfy (∗∗), since a node of B0 extending
w a k cannot also extend w a λ and vice versa.
Thus, a node of B0 in front of w is in front of some w a k, for some unique k.
Moreover, given an element of B0 we can effectively find in which Bwak

0 is included.
I.e.,

Bw
0 �

∞∨
k=1

Bwak
0 ,

and � is explained by the existence of all those k for which w a k /∈M and, obviously,
Bwak

0 = {k} is not a node of B0 in front of w. Thus, Bw
0 acquires a w.o.s structure,

since it can be seen as the following ordered sum

Bw
0 =

(∞)⊕
λ=1

Bwaλ
0 ,

where the (possibly) infinite species Bwaλ
0 are not one-element species of natural num-

bers i.e., only subspecies of B0 in front of immediate successors w a λ which belong to
M are included to this ordered sum. Thus, we proved for all three kinds of inferences
the preservation property of Ru.�
It is clear that without BD, i.e., without a determination of all possible inferences in
a canonical proof, it is impossible to provide the above inductive proof of preservation
property of Ru.

Proposition 11.3: Ru has the well-ordering property of canonical proofs.

Proof: We need to show that each node v the securability of which is proved in Ru has
the w.o.p.n i.e., the species Bv

0 of those nodes of B0 in front of v is a w.o.s.

Ru necessarily starts from some η-inferences, such that “going up” afterwards through
ζ-inferences and mainly “going down” through z-inferences, we reach the securability
of node u.

This is the interesting case, since if node u is “above” B0, then Ru is just an η-inference.
When the securability of a node v is proved in Ru through an η-inference though, species
Bv

0 in front of v is an one-element species, hence a w.o.s, therefore v has the w.o.p.n.
Since, by Proposition 11.2, proof Ru has the preservation property, the w.o.p.n is trans-
ferred from the nodes-premisses in Ru to nodes-conclusions in Ru.�
The main argument of the above proof contains a non-trivial point, from the intuition-
istic point of view, discussed in Paragraph 15.
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Proposition 11.4: In proof Ru the node u has the well-ordering property for nodes.

Proof: Since the securability of u is proved in proof Ru and Ru has the w.o.p.p, then
its final conclusion u has the w.o.p.n.�
Proposition 11.5 Brouwer’s Bar theorem (BBT2): If B is a decidable species of
M -nodes, where M is a spread, such that the root <> is B-securable, then B contains
a well-ordered thin sub-bar.

Proof: We actually prove that the distinguished thin sub-bar B0 of B is a well-ordered
species. Since hypothesis of BBT2 is a supposable proof of the securability of root <>,
then, by Brouwer’s dogma, there is a canonical proof R<> of the securability of <>.
Then, by Proposition 11.4, in case u = <>, node <> has the w.o.p.n meaning that,
the species of nodes B<>

0 in front of <> is a w.o.s. Since

B<>
0 = B0,

B0 is a w.o.s.�
We can give an exact description of the well-ordering of B0.

Proposition 11.6: The well-ordering of B0, under the hypotheses of BBT2, is the
lexicographic ordering.

Proof: Let u = (a1, a2, ..., an) and v = (b1, b2, ..., bm) two different elements of B0.
Since B0 is a thin bar, it is impossible that u, v are extensions of one another. Hence,
there is some index i ≥ 1 for which ai 6= bi for the first time. In lexicographic ordering
if ai > bi, then u � v, while if ai < bi, then u ≺ v.
Let w is the maximum common segment of u, v i.e., l(w) = i− 1.
If k = a(i) < b(i) = λ, then

B
(w)
0 = B

(wa1)
0 ⊕B(wa2)

0 ⊕ ...⊕Bwak
0 ⊕ ...Bwaλ

0 ⊕ ...,

where B
(waj)
0 is in front of w a j, if w a j is M -accepted. Since u ∈ Bwak

0 and
v ∈ Bwaλ

0 , u ≺ v, exactly as in the lexicographic ordering.�
For example, if M is the universal spread and the nodes (2, 2), (2, 5, 1), (2, 6, 2) cut the

bar B0, then B
(2,2)
0 = {(2, 2)}, B(2,5,1)

0 = {(2, 5, 1)} and B
(2,6,2)
0 = {(2, 6, 2)}. Since,

B
(2)
0 = B

(2,1)
0 ⊕B(2,2)

0 ⊕ ...⊕B(2,5)
0 ⊕B(2,6)

0 ⊕ ...,

by the definition of an infinite ordered sum, we get that

(2, 2) ≺ (2, 5, 1) ≺ (2, 6, 2),

since (2, 2) ∈ B(2,2)
0 (2, 5, 1) ∈ B(2,5)

0 and (2, 6, 2) ∈ B(2,6)
0 . The above ordering is exactly

the lexicographic one.
Of course, if we had defined the lexicographic ordering on B0, we wouldn’t get its well-
ordering as this has been defined intuitionistically. Lexicographic ordering on its own
does not give some information on the structure of B

(a1,a2,...,an)
0 . Even in a classical

setting, lexicographic ordering is not necessarily a well-ordering. E.g., lexicographic
ordering is defined on decimal expansions of real numbers, which is not though, a well-
ordering. Such a well-ordering is established only through the axiom of choice.
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We now complete Brouwer’s proof of BFT through BBT2, showing how the hypothesis
of fan is crucial to its proof.

Proposition 11.7 Brouwer’s Fan theorem (BFT): If T is a fan and ϕ : T → ω
an intuitionistic function, then there exists a natural N , such that, for each infinite
T -sequence α, its value ϕ(α) is determined by its initial segment Nα.

Proof: By the definition of ϕ, Bϕ is a decidable species therefore, a decidable bar. By
BBT1, Bϕ0 is a well-ordered species.
If u is node of T that has not yet cut Bϕ0 , then the species Bu

ϕ0
is a decidable sub-species

of Bϕ0 , since properties v ∈ Bϕ0 and v � u are both decidable. Hence, by Proposition
10.8, Bu

ϕ0
is also a w.o.s.

If u a k1, u a k2, ..., u a kn are the immediate successor nodes of u, then

Bu
ϕ0

=
n∨
i=1

Buaki
ϕ0

.

Since Buaki
ϕ0

are mutually disjoint, and also, as we argued for Bu
ϕ0

already, it is a w.o.s,
then

Bu
ϕ0

=
n⊕
i=1

Buaki
ϕ0

.

If u a ki ∈ Bϕ0 , then Buaki
ϕ0

is an one-element w.o.s, while if not, then Buaki
ϕ0

is a finite
direct sum of w.o.s. Going on like that we reach Bϕ0 i.e., the corresponding constituent
w.o.s are one-element w.o.s, and all intermediate species are finite and finally Bu

ϕ0
is a

finite species.
If we take u = <>, then

B<>
ϕ0

= Bϕ0 ,

which is also finite. Thus, Bϕ0 has a node of maximum length N , the global bound of
BFT.
In the above proof we considered <> not to have cut B. Otherwise, <> belongs to B
and BFT is trivially true.�
If BBT1(ωω) denotes Brouwer’s bar theorem on the universal spread, then BBT1(ωω)
entails BBT2.

Proposition 11.8: BBT1(ωω)⇒ BBT1.

Proof: If BM is a decidable bar for a spread M , then BM is extended to a decidable
bar B on ωω, where

B = BM ∨M
′
,

where M
′

is the species of M -unaccepted nodes. Decidability of BM and ΛM entail
decidability of B. B is a bar, since each infinite sequence of M is barred by BM , while
each infinite sequence outside M is barred by M

′
. By hypothesis, B has a well-ordered

thin sub-bar B0. Then,
BM

0 = B0 ∩BM

is well-ordered decidable thin sub-bar of BM , since:
(i) BM

0 is a sub-bar of BM , since it is by its definition a subspecies of BM and each
M -sequence cuts B0 at some node of BM .
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(ii) BM
0 is decidable as the conjunction of two decidable species.

(iii) BM
0 is thin, since if u ∈ BM

0 and v ≺ u, then v 6∈ B0, hence, v 6∈ BM
0 too.

(iv) BM
0 is well-ordered, since it is a decidable subspecies of a w.o.s (Proposition 10.8).

B0 includes one-element species {(k)}, where (k) is an 1-sequence which is not ΛM -
accepted, and species BM

0 .�

12. Brouwer’s Uniform Continuity theorem. As van Dalen remarks79, Brouwer’s
results in BIA are consequences of BFT rather than direct applications of BBT. We
study here some fundamental consequences of BFT, especially on intuitionistic Func-
tions.
If Φ : M → ωω is an M,ωω-Function, then the species Φ(M) of sequences Φ(α), where
α ∈M , is not, generally, a spread (Proposition 12.4). If though, M is a fan, then Φ(M)
is not only a spread, but also a fan. This fact is a consequence of the general validity
of BFT on fans only.

Proposition 12.1: If T is a fan and Φ : T → ωω is an intuitionistic Function, then
species Φ(T ) is not only a spread, but also a fan.

Proof: (I) First we show that Φ(T ) is a spread.
In order to show that we show how a decidable law ΛΦ(T ), which generates the choice
sequences of Φ(T ), is defined.
An 1-sequence (n) is ΛΦ(T )-accepted iff n is the first term of some sequence Φ∗(u), where
u is ΛT -accepted.

In order ΛΦ(T ) be decidable, this acceptance must be decided in finite time. I.e., all
T -accepted nodes u which activate Φ∗ for the first time must be checked in finite time.
Since T is a fan this is possible, because, if we define the function ϕ1 : T → ω,

ϕ1(α) = [Φ(α)]1 = [Φ∗(u)]1,

where [Φ(α)]1 is the first element of sequence Φ(α) and u the first initial segment of
α activating Φ∗, then ϕ1 satisfies BFT, therefore, there is some index N1 for which all
T -sequences activating Φ∗ for the first time are of length ≤ N1. Since those sequences
in a fan are finite, the above check of law ΛΦ(T ) for 1-sequences is effective. In the
general case ΛΦ(T ) works as follows:

A sequence (b1, b2, ..., bn) is ΛΦ(T )-accepted iff (b1, b2, ..., bn) is the n-initial segment some
node Φ∗(u), where u is ΛT -accepted.

ΛΦ(T ) is again decidable through function ϕn : T → ω, where

ϕn(α) = [Φ(α)]n = [Φ∗(u)]n,

and [Φ(α)]n is the n-th term of sequence Φ(α) and u is the first initial segment of α
activating Φ∗ such that its image Φ∗(u) has length ≥ n.
ΛΦ(T ) also allows the ever extension of the nodes it accepts, since Φ∗ is not finally
constant.
Hence, ΛΦ(T ) is a spread law, which generates exactly those sequences of species Φ(T ),
since each infinite ΛΦ(T )-sequence belongs to Φ(T ), and each sequence of Φ(T ) is ΛΦ(T )-
generated, since each of its initial segments is ΛΦ(T )-accepted.

79See [Brouwer 1981] p.101.
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(II) We now show that Φ(T ) is also a fan.
If Φ∗(u) is considered, then each immediate successor node of Φ∗(u) is an initial segment
of the value under Φ∗ of some node v which extends u, and v is the first successor node
of u for which Φ∗(v) strictly extends Φ∗(u). If we show that these sequences v are finite,
then the immediate successor nodes of Φ∗(u) are also finite.
For that we define ϕu : B(u)→ ω, whereB(u) is the species of those infinite T -sequences
which extend u80, by

ϕu(α) = k, where k is the length of the initial segment of α for which Φ∗(kα) � Φ∗(u).

ϕu is well-defined, since Φ∗ is not finally constant and k can be effectively found. Also,
species B(u) is a sub-fan of T , with ΛB(u) the law which accepts u and each T -sequence
extending u. Hence, B(u) is also a fan, therefore, by BFT, there is some N , such that
all critical to ϕu nodes have length ≤ N . Thus, sequences v extending u such that
Φ∗(v) strictly extends Φ∗(u) for the first time are of length ≤ N , therefore, they are
finite in number.

If w is an initial segment of some Φ∗(u) without being some Φ∗(u
′
), we define function

ϕw : T → ω, where ϕ(α) is the least length k for which Φ∗(kα) � w, if Φ(α) � w and
0, if ¬[Φ(α) � w]. But,

Φ(α) � w ∨ ¬[Φ(α) � w],

since w is a finite node and then ϕw is well-defined. Applying BFT on ϕw we find again
that the immediate successor nodes of w are finite in number.�
Proposition 12.2: If T is a splitting fan and Φ : T → ωω an intuitionistic 1 − 1
Function, then species Φ(T ) is also a splitting fan.

Proof: Let a Φ(T )-node Φ∗(u). We show that Φ∗(u) has two non-comparable ex-
tension Φ∗(u1) and Φ∗(u2). By hypothesis, u has two non-comparable T -extensions
u1, u2. Hence, there are infinite T -sequences α, β extending u1, u2. Since Φ is 1 − 1,
Φ(α) 6= Φ(β). I.e., at some point of their generation Φ(T )-sequences Φ(α),Φ(β), ex-
tending both Φ∗(u), split i.e., Φ∗(u) splits. If node w is an initial segment of a node
Φ∗(u), then w splits, since its extension Φ∗(u) splits.�
As we saw in proof of Proposition 12.1, BFT was necessary in order ΛΦ(T ) is decidable.
Since fan theorem is violated in case a spread is not a fan, Proposition 12.1 is expected
not to hold for them.
Intuitionistically speaking, a spread which is not a fan is a spread for which it is impos-
sible to be a fan, through the BHK-interpretation of negation. A spread M is positively
not a fan iff we know an M -node u with infinite number of immediate successor nodes.

Proposition 12.3: If M is a spread positively not a fan, then there is an intuitionistic
function ϕ : M → ω, such that there are least critical nodes for ϕ∗ of arbitrary length,
therefore the conclusion of BFT doesn’t hold for M .

Proof: Let u = (α0, α1, ..., αn−1) an -node of length n for which we know that it has
infinite immediate successors. We then define ϕ : M → ω by

ϕ(α) = α(α(n)).

80Classically, B(u) is the clopen basic set of Baire space (see the Appendix).
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If we consider only sequences α extending u, we see that numbers α(n) are infinite,
hence arbitrary large. Therefore, the length of the initial segments of these sequences
α which activate ϕ∗ is arbitrary large too.

Proposition 12.4: If M is a spread positively not a fan, there is an intuitionistic
Function Φ : M → 2ω, such that species Φ(M) is not a spread.

Proof: Let ϕ : M → ω be the function of the previous proof. We define Φ : M → 2ω

as follows:
If u is an M -node, non-critical for ϕ∗, and of length n, then

u
Φ∗7→ (1, 1, ..., 1︸ ︷︷ ︸

n

),

while if M -node u is critical for ϕ∗, then

u
Φ∗7→ (1, 1, ..., 1︸ ︷︷ ︸

N−1

, 0, 0, ..., 0

︸ ︷︷ ︸
n

),

where n is the length of u and N is the length of the least critical sequence included in
u.
Since there are least critical for ϕ∗ nodes of arbitrary length, any initial segment of
constant sequence 1 is the image some non-critical for ϕ∗ -node u under Φ∗. Hence,
each initial segment of 1 is the initial segment of a sequence of Φ(T ), while 1 doesn’t
belong to it. Otherwise, there would be an M -sequence none initial segment of which
is critical for ϕ∗, hence ϕ couldn’t be defined on it. This is impossible, since all of [M ]
is the domain of definition of ϕ. Thus, Φ(T ) is not a spread, since a spread always
contains a sequence, each initial segment of which is the initial segment of some of its
sequences.�
The above propositions show how properties of intuitionistic Functions depend on the
behavior of intuitionistic functions (we have already seen this in Veldman’s proof of
continuity of a real Function of Brouwer) and BFT.
A species A of sequences of natural numbers is called analytic iff it is the empty species
or the image of the unversal spread under an intuitionistic Function Φ i.e., if there is a
Φ : ωω → A, such that

Φ(ωω) = A.

As we have showed in Proposition 9.2, each spread is analytic species. The analytic
species Φ(Θ(ωω)), where Θ : ωω →M the retraction Function of Proposition 9.2 on M
and M , Φ as in Proposition 12.4, is not a spread.

Proposition 12.5: The image of an analytic species A under some intuitionistic Func-
tion is also analytic species.

Proof: If Φ : ωω → A and Θ : A → Θ(A) are intuitionistic Functions, then Function
Θ ◦ Φ : ωω → Θ(A) is defined. (Θ ◦ Φ)∗(u) = Θ∗(Φ∗(u)) computes Θ ◦ Φ, which is
obviously onto Θ(A).�
Analytic species though, do not behave as classical analytic sets since, for example, the
intersection of analytic species is not, in general, analytic species too. As we saw in
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Paragraph 5, the intersection of two spreads is not, in general, a spread too, since we
defined two spreads, the intersection of which couldn’t say if it was the constant zero
sequence or the empty spread. Hence, we cannot define an intuitionistic Function from
ωω to the intersection, since we do not know whether the nodes of naturals must corre-
spond to the empty sequence or to initial segments of 0. Our ignorance regarding the
evolution of a spread because of the dependence of spreads on unsolvable mathematical
problems is behind the difference between analytic species and analytic sets.

Proposition 12.6: If T is a fan, then there is homeomorphism Φ : T → T2, where T2

is a sub-fan of 2ω.

Proof: By Proposition 12.1, it suffices to define an invertible Function Φ : T → 2ω,
such that Φ(T ) is the sub-fan T2. If (a1, a2, ..., an) is a T -node, Φ∗ is determined by the
following correspondence:

(a1, a2, ..., an)
Φ∗7→ (1, 1..., 1︸ ︷︷ ︸

a1+1

, 0, 1, 1..., 1︸ ︷︷ ︸
a2+1

, 0, ..., 0, 1, 1, ..., 1︸ ︷︷ ︸
an+1

).

Φ∗ is monotone, Function Φ determined by Φ∗ is 1− 1, and its inverse is defined on the
nodes of T2 by the inverse law Φ−1∗ to Φ∗.�
BFT on 2ω has, of course, the following form:

BFT (2ω) (∃N)(∀α)(α ∈ 2ω)ϕ(α) = ϕ∗(Nα).

Proposition 12.7: BFT is equivalent to BFT (2ω).

Proof: If T is a fan, then, by Proposition 12.6, there is a homeomorphism Φ : T → T2,
where T2 is a sub-fan of 2ω. Since, there is a retraction Function Θ : 2ω → T2, BFT (2ω)
on function ϕ ◦ Φ−1 ◦ Θ entails BFT regarding function ϕ : T → ω. If α ∈ T and
β = Φ(α), then

(ϕ ◦ Φ−1 ◦Θ)(β) = (ϕ ◦ Φ−1)(β) = ϕ(α).

By BFT (2ω), the value (ϕ ◦Φ−1 ◦Θ)(β) is determined by a segment Mβ = MΦ(α). But
a segment (1, ..., 1, 0, 1, ..., 1, 0, ..., 0, 1, ..., 1︸ ︷︷ ︸

M

) of length M corresponds to a segment Nα

of α, where N is at most M+1
2

, if M is odd, or M
2

, if M is even. Thus N = M+1
2

is a
global bound of ϕ, since Nα determines Mβ, which in turn determines value ϕ(α).�

BFT is the most important proposition of BIA, since it proves the remarkable, from
the classical point of view, uniform continuity theorem (UCT), according to which an
intuitionistic Function Φ : [α, β] → <Br is uniformly continuous, just by being defined
on the intuitionistic closed interval [α, β].
We follow here Heyting’s presentation of the proof of UCT (see [Heyting 1966] pp.46-
47), including only what is necessary with respect to properties of order of intuitionistic
reals. A condensed proof of UCT can also be found in [Brouwer 1927].

A canonical real number generator (c.r.n.) is a sequence (λn
2n

)n, where λn ∈ Z, such
that

|λn
2n
− λn+1

2n+1
| < 1

2n
, (1)

for each n. It is easy to see that (1) guarantees that (λn
2n

)n is a r.n. i.e., an intuitionistic
Cauchy sequence.
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Proposition 12.8: If qk is a rational number, then there is a unique rational number
λn
2n

, where λn ∈ Z, such that

|qk −
λn
2n
| ≤ 1

2n+1
. (2)

Proof: |qk − λn
2n
| ≤ 1

2n+1 ⇔ − 1
2n+1 ≤ λn

2n
− qk ≤ 1

2n+1 ⇔

2nqk −
1

2
≤ λn ≤ 2nqk +

1

2
.

If the ends of the interval [2nqk − 1
2
, 2nqk + 1

2
] are not integers, then λn is the unique

integer in it, and (2) is satisfied.
If the ends of the interval [2nqk − 1

2
, 2nqk + 1

2
] are integers, then, if m = 2nqk − 1

2
and

m+ 1 = 2nqk + 1
2
, qk = 2m+1

2n+1 , and if we set λn = m,

|qk −
λn
2n
| = |2m+ 1

2n+1
− m

2n
| = 1

2n+1

i.e., we get equality.�
Proposition 12.9: If α is a r.n., then there is a c.r.n. (λn

2n
)n, such that

|α− λn
2n
| < 5

8

1

2n
, (3)

i.e., α is representable by a c.r.n.

Proof: If (qα(k)) is a representation of α, and since there is some n0 such that |qα(k) −
α| < 1

2n+3 , for each k ≥ n0, then, using Proposition 12.8, someone could write

|α− λn
2n
| ≤ |α− qα(k)|+ |qα(k) −

λn
2n
| < 1

2n+3
+

1

2n+1
=

5

8

1

2n
.

Also,

|λn
2n
− λn+1

2n+1
| ≤ |λn

2n
− α|+ |α− λn+1

2n+1
| < 5

8

1

2n
+

5

8

1

2n+1
=

15

16

1

2n
<

1

2n
.

Actually, the above argumentation is not intuitionistically correct, since the triangle
inequality does not hold, only a variation of it (see Proposition 12.17). We reach the
above inequality though, through some of the following propositions. What is needed
for the exact formulation of the above proof can be found in the proof of Proposition
12.19. We present this standard simple technique there.�
We strengthen a bit now the definitions of equality and order between r.n. given in
Paragraph 8. Namely, a real number (generator) (r.n.) is a sequence (qα(n)) of rational
numbers satisfying

(∀k)(∃n0α)(∀n ≥ n0α) |qα(n) − qα(n+1)| <
1

2k+1
.

Also,

α ≈ β ⇔ (∀k)(∃n0)(∀n ≥ n0) |qα(n) − qβ(n)| <
1

2k
,
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and

(qα(n)) < (qβ(n))⇔ (∃k)(∃n0)(∀n ≥ n0) qβ(n) − qα(n) >
1

2k
,

α < β ⇔ (∃(qα(n)))(∃(qβ(n))) (qα(n)) < (qβ(n)).

Note that all expected properties of order and of other operations on rationals intu-
itionistically hold. Unfortunately, the transition of these properties to the intuitionistic
reals is not always possible.
It is easy to see that < is compatible to ≈ i.e., if α < γ and α ≈ β, γ ≈ δ, then β < δ.
In Paragraph 5 we defined the intuitionistic closed interval [α, β] as an appropriate
spread. Its points were its choice sequences. A tacit assumption of that definition was
that α < β was considered known, and it is easy to prove that for each x ∈ [α, β],
α ≤ x ≤ β, where ≤ is defined in complete analogy to <, and x ≤ y ⇔ ¬(x > y), is
also proven.
In general, if α, β ∈ <Br, we do not know which one is greater or equal than the other
i.e., < is not total upon <Br. The universal law of trichotomy can be refuted, at least
in an axiomatic setting of intuitionistic analysis, since

¬[(∀x, y)(x < y ∨ x = y ∨ y < x)]

can be proved81, while for each two r.n. x, y

¬¬(x < y ∨ x = y ∨ y < x)

is also proven.
Hence, if α, β ∈ <Br are given without knowing their order relation we still want to talk
about their closed interval ∆[α, β] as in classical analysis. In order to do that we define
the intuitionistic closed interval ∆[α, β] of the arbitrarily given α, β ∈ <Br as
the species of the intuitionistic reals x, such that x > α and x > β is impossible and
x < α and x < β is also impossible. I.e., the hypotheses x > α and x > β and x < α
and x < β lead, respectively, to an absurdity, for each element x of ∆[α, β].

Proposition 12.10: If α, β ∈ <Br, then

γ = min(α, β) = (min(qα(n), qβ(n))), δ = max(α, β) = (max(qα(n), qβ(n)))

are also r.n.

Proof: By the definition of r.n.

(∀k)(∃n0α)(∀n ≥ n0α) |qα(n) − qα(n+1)| <
1

2k+1
,

(∀k)(∃n0β)(∀n ≥ n0β) |qβ(n) − qβ(n+1)| <
1

2k+1
.

If n0 = max(n0α, n0β), then for each n ≥ n0

| qγ(n) − qγ(n+1) | = |min(qα(n), qβ(n))−min(qα(n+1), qβ(n+1))| <
1

2k+1
,

81See [Troelstra, van Dalen 1988a] pp.257-58. CP can be used in the proof of this negation.
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and

| qδ(n) − qδ(n+1) | = |max(qα(n), qβ(n))−max(qα(n+1), qβ(n+1))| <
1

2k+1
.

To show these inequalities it suffices to take all four cases regarding min(qα(n), qβ(n))
and max(qα(n), qβ(n)) and see that the second couple of inequalities is clearly justified
in each case by the first one.�
Hence, although we cannot know if max(α, β) or min(α, β) is α or β, these numbers
can be defined and they behave in an expected way, as the following proposition shows:

Proposition 12.11: If α, β ∈ <Br, then
(i) max(α, β) ≮ α, where x ≮ y ≡ ¬(x < y), max(α, β) ≮ β, max(α, β) = max(β, α),
min(α, β) ≯ α, where x ≯ y ≡ ¬(x > y), min(α, β) ≯ β, min(α, β) = min(β, α).
(ii) x > max(α, β)⇔ x > α ∧ x > β,
x < min(α, β)⇔ x < α ∧ x < β.
(iii) max(α, β) ≮ min(α, β) .

Proof: All the above properties are trivial consequences of the definition of order.�
A very useful property of a canonical representation of a r.n is given next.

Proposition 12.12: If γ, δ ∈ <Br and δ ≮ γ, then there exist canonical representations
γn
2n
, δn

2n
of γ, δ respectively such that

γn ≤ δn.

Proof: Equivalently, if α ≯ 0, then αn ≤ 0, if α = (αn
2n

), meaning that after some finite
terms all terms are ≤ 0 and we can replace the other > 0 finite terms by 0. Similarly,
if α ≮ 0, we can take all αn to be ≥ 0. We show this last fact.
By the definition of order, α < 0⇔ (∃k)(∃n0)(∀n ≥ n0) 0− qα(n) >

1
2k
⇔ qα(n) < − 1

2k
.

Hence,

α ≮ 0⇔ (∀k)(∀n0)(∃n ≥ n0) qα(n) ≥ −
1

2k
⇔ −qα(n) ≤

1

2k
(∗).

Suppose now that αn < 0, for each n. Then, −αn
2n
> 0, and since αn ∈ Z, then −αn ≥ 1,

therefore
−αn
2n
≥ 1

2n
(∗∗).

Since (∗) holds for each k and (∗∗) holds for each n, we get a contradiction.�
Regarding our last argument, note that what we wanted to prove was that each canon-
ical representation of α has only finite terms < 0, and replacing these terms by 0, we
get αn ≥ 0, for each n. I.e., we had to exclude the case of having infinite terms αn < 0.
But such infinite terms form a (Cauchy) subsequence of an initial canonical representa-
tion of α, which is thus a canonical representation of α too. That is why we supposed
αn < 0, for each n.
A simple consequence of the previous result is the following often used property of or-
der.

Proposition 12.13: If x, γ, δ r.n., then
(i) x > δ ∧ δ ≮ γ ⇒ x > γ.
(ii) x < δ ∧ γ ≮ δ ⇒ x < γ.

Proof: (i) By Proposition 12.12, if δ ≮ γ, then there exist canonical representa-
tions γn

2n
, δn

2n
such that γn ≤ δn. Since there is a representation (xn) of x, such that
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xn >
δn
2n
≥ γn

2n
we get x > γ.

(ii) is proved similarly.�
Next result shows why the introduction of min(α, β) and max(α, β) is important:

Proposition 12.14: If α, β ∈ <Br and γ = min(α, β), δ = max(α, β), then

∆[α, β] = ∆[γ, δ].

Proof: We show that the above two species are subspecies of each other, therefore
equal.
(i) ∆[α, β] � ∆[γ, δ]: By definition

x ∈ ∆[α, β]⇔ ¬(x > α ∧ x > β) ∧ ¬(x < α ∧ x < β).

Suppose x ∈ ∆[α, β]. We show that

¬(x > γ ∧ x > δ) ∧ ¬(x < γ ∧ x < δ).

Suppose x > δ. Then, by Proposition 12.11(ii), x > α and x > β, which leads, by
hypothesis, to a contradiction. We work similarly, if x < γ.
(ii) ∆[α, β] � ∆[γ, δ]: We work exactly the same way as in case (i).�
Proposition 12.15: If x, α, β ∈ <Br and α ≯ β, then

x ∈ ∆[α, β]⇔ x ≮ α ∧ x ≯ β.

Proof: (⇒) Suppose x ∈ ∆[α, β] ⇔ ¬(x > α ∧ x > β) ∧ ¬(x < α ∧ x < β) and x <
α. Then, since by hypothesis α ≯ β, Proposition 12.13(ii) gives x < β, which, together
with x < α, lead to absurdity. If x > β, then by Proposition 12.13(i), we get x > α
and finally an absurdity again.
(⇐) Our hypotheses are x ≮ α and x ≯ β and α ≯ β. If we suppose x > β, then this
contradicts x ≯ β, while if we suppose x < α, then this contradicts x ≮ α.�
Proposition 12.16: If x, α, β ∈ <Br, then

x ∈ ∆[α, β]⇔ x ≮ γ ∧ x ≯ δ,

where γ = min(α, β), δ = max(α, β).

Proof: This is an immediate consequence of the previous proposition, since γ ≯ δ, by
Proposition 12.11(iii), and ∆[α, β] = ∆[γ, δ].�
We shall also need the following properties of the absolute value |α| of a r.n. α, which
does not behave as the classical one.

Proposition 12.17: If |α| = max(α,−α) = (|qα(n)|), then

|α|+ |β| ≮ |α + β|, |α + β| ≮ ||α| − |β||.

Proof: Suppose |α|+ |β| ≮ |α + β|. Then, ∃k, ∃n0, n ≥ n0 |qα(n) + qβ(n)| − (|qα(n)| +
|qβ(n)|) > 1

2k
. But this inequality is not true in the species QBr which behaves as the

classical set Q. We work the same way for the other property.�
The following theorem characterizes a closed interval ∆[α, β] as a fan, a fact proven
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independently from BFT. Note that a subset of Baire space N is compaxt iff is the
body of a fan (see Appendix, Proposition A.6).

Proposition 12.18 [Brouwer 1919]: A closed interval ∆[α, β] of <Br is equal, as a
species, to a fan F[α,β].

Proof: If we define γ = min(α, β), δ = max(α, β), then, by Proposition 12.12,
∆[α, β] = ∆[γ, δ]. Also, by Proposition 12.12 we can represent γ, δ in a canonical
way by sequences γn

2n
, δn

2n
, where γn, δn ∈ Z, and γn ≤ δn.

Let F[α,β] be the spread of c.r.n. (xn
2n

), satisfying

γn ≤ xn ≤ δn,

for each n. We show that F[α,β] is actually a fan. By definition

|xn
2n
− xn+1

2n+1
| < 1

2n
,

for each n, therefore
xn
2n
− 1

2n
<
xn+1

2n+1
<
xn
2n

+
1

2n
⇔

2xn − 2 < xn+1 < 2xn + 2.

Since xn, xn+1 are integers, xn+1 can take only the values: 2xn − 1, 2xn, 2xn + 1 and
consequently, the possible immediate successors of xn

2n
are

2xn − 1

2n+1
=
xn
2n
− 1

2n+1
,

2xn
2n+1

=
xn
2n
,

2xn + 1

2n+1
=
xn
2n

+
1

2n+1

respectively. Therefore, F[α,β] is a finitely branching spread. Now, by Proposition 12.14
it suffices to show that

F[α,β] = ∆[γ, δ].

F[α,β] � ∆[γ, δ]: We apply Proposition 12.16. Suppose x ∈ F[α,β] and x > δ. Then,
xn
2n
> δn

2n
i.e., xn > δn, which contradicts the definition of F[α,β]. Similarly we reach a

contradiction supposing x < γ. Hence x ∈ ∆[γ, δ].
F[α,β] � ∆[γ, δ]: If x ∈ ∆[γ, δ], then, by Proposition 12.16, x ≮ γ ∧ x ≯ δ. Since x ≮ γ,
then by Proposition 12.12, γn ≤ xn and since x ≯ δ, then xn ≤ δn and consequently
γn ≤ xn ≤ δn i.e., x ∈ F[α,β].�
Now we are ready to prove, using BFT, Brouwer’s Uniform Continuity theorem.

Proposition 12.19 Brouwer’s Uniform Continuity theorem (UCT 1923): If
Φ : ∆[α, β]→ <Br is an intuitionistic Function, then Φ is uniformly continuous.

Proof: By the previous proposition, Φ is actually a Function

Φ : F[α,β] → <Br,

and

x 7→ Φ(x) = ξ = (
ξn
2n

).

For each ν ∈ ω we define an intuitionistic function

ϕν : F[α,β] → ω,
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by
ϕν(x) = ξν .

Since F[α,β] is a fan, BFT ensures the existence of a natural number N = N(ν) such
that

∀x∀y Nx = Ny ⇒ ϕν(x) = ϕν(y).

Then we show that this natural number N satisfies the following condition

|x− y| < 1

2N+1
⇒ |Φ(x)− Φ(y)| < 5

4

1

2ν
,

which guarantees, since it holds for each ν, that Φ is uniformly continuous.
If |x − y| < 1

2N+1 we can consider, without loss of generality, that the canonical repre-
sentations (xn

2n
), (yn

2n
) satisfy

x1 = y1, x2 = y2, ..., xN = yN .

To see this we write

0 < |x− y| = (|xn
2n
− yn

2n
|) = (

|xn − yn|
2n

) <
1

2N+1

and since ( |xn−yn|
2n

) is clearly a canonical representation of |x− y| ((xn−yn
2n

) is a canonical
representation of x− y), we may choose

0 ≤ |xn − yn|
2n

≤ λn,

where λn is the following canonical representation of 1
2N+1 :

λn =

{ 0
2n

, if n < N + 1
2n−(N+1)

2n
= 1

2N+1 , if n ≥ N + 1

Hence, the first N terms of |xn−yn|
2n

are 0 and consequently x1 = y1, x2 = y2, ... xN = yN .
Thus, sequences (xn

2n
), (yn

2n
) have the same initial N -segment.

Therefore, for Φ(x) = ξ = ( ξn
2n

) and Φ(y) = ζ = ( ζn
2n

)

Nx = Ny ⇒ ξν = ζν = η.

By (3) of Proposition 12.9,

5

8

1

2ν
> |Φ(x)− η

2ν
|, 5

8

1

2ν
> |Φ(x)− η

2ν
|

hence82,
5

4

1

2ν
> |Φ(x)− η

2ν
|+ |Φ(x)− η

2ν
| ≮ |Φ(x)− Φ(y),

therefore, by Proposition 12.13(i),

5

4

1

2ν
> |Φ(x)− Φ(y)|,

82Using the obvious property x > α, y > β ⇒ x+ y > α+ β.
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and UCT is established.�
Of course, UCT is classically false. E.g., f : [−1, 1]→ R with

f(x) =

{
0 , if x ≤ 0
1 , if x > 0

is discontinuous at 0. Intuitionistically though, the order < of <Br does not satisfy83.
the classically true disjunction

(∀x)(x ≤ 0 ∨ x > 0),

therefore, the above Function f is not totally defined on [−1, 1]. I.e., the fact that an
intuitionistic Function is totally defined on an interval is a much stronger hypothesis
which entails its uniform behavior.
And what about discontinuous functions within intuitionism? The answer is given in
Weyl’s 1920 Zürich lectures and in Brouwer’s approving editorial notes84.

[(Weyl) “It is clear that one cannot explain the concept ‘continuous func-
tion in a bounded interval’ without including ‘uniform continuity’ and ‘bound-
edness’ in the definition. Above all, there cannot be any function in a contin-
uum other than continuous functions. When the Old Analysis introduced
‘discontinuous functions’ it showed most clearly how far it had departed
from a clear understanding of the essence of the continuum. What is nowa-
days called a discontinuous function is in reality no more than a number of
functions on separate continua...”
(Brouwer) “Better to say ‘the function is not everywhere defined’.”
(Weyl) “Take for example the continua C,C+(x > 0) and C−(x < 0)... If
we consider the two functions +1 in C+ and −1 in C− then there does not
exist a function defined on the whole of C equivalent with the one value for
C+ and the other value for C−.”
(Brouwer) “Very true! Underline, because this is the main and most im-
portant point.”]

Proposition 12.20: If f : <Br → ω, is an intuitionistic <Br-function, then f is
constant.

Proof: A <Br-function f : <Br → ω can be seen as a Function F : <Br → ωω, where

F (α) = n,

and n is the constant sequence (n, n, n, ...).
If α, β two different real numbers, the interval [α, β] is a fan and F|[α,β] satisfies UCT
i.e., if 1 > ε > 0,

(∃δ)(∀γ)(∀β)(|γ − β| < δ ⇒ |F (γ)− F (δ)| < ε),

which becomes
(∃δ)(∀γ)(∀β)(|γ − β| < δ ⇒ F (γ) = F (δ)).

83See e.g., [Truss 1997] p.319.
84We quote from [van Stigt 1990] p.379.
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Since we can cover [α, β] by a finite number of intervals of length δ, then, starting from
α, we conclude that F (α) = F (β).�
If T is a subspecies of S, then T is called a detachable subspecies of S iff

S = T ∨ (S − T ).

Proposition 12.21: If T is a detachable subspecies of ∆[α, β], then T is the empty
species or the whole of ∆[α, β].

Proof: Since T is a detachable subspecies of ∆[α, β], then the following function

fT (x) =

{
1 , if x ∈ T
0 , if x /∈ T

is totally defined on ∆[α, β], therefore, arguing as in the proof of Proposition 12.20, fT
is constant. If fT = 1, then T = ∆[α, β], while if fT = 0, then T is the empty species.�
The full development of <Br is beyond the scope of our Thesis. What we presented here
is only the foundational core of Brouwer’s Intuitionistic Analysis. Many theorems of
classical analysis, like the Bolzano-Weierstrass theorem, or the intermediate value the-
orem fail, but intuitionistic counterparts of them are studied (see e.g., [Heyting 1966]
and [Troelstra, van Dalen 1988a]).

13. Post-Brouwer formulations of Fan theorem. We present some results around
fan theorem and some generalizations of BFT connecting BIA to post-Brouwer intu-
itionistic analysis. These concepts and results form part of the way Brouwer’s intu-
itionism was received and presented in post-Brouwer era.
The necessity of bar’s decidability: As we have already said, Brouwer didn’t men-
tion explicitly in the hypotheses of his Bar theorem the decidability of bar B. Kleene,
in [Kleene, Vesley 1965] pp.87-88, showed that the decidability of B is necessary. We
present here a simplified version of Kleene’s counterexample given by van Dalen in
[Brouwer 1981] p.102):

Proposition 13.1 (Kleene’s counterexample (KC)): There exists a spread M and
an undecidable bar B of M such that B has no thin decidable sub-bar B0, therefore
Bar theorem fails for spread M and its bar B.

Proof: Let ωω be the universal spread and A a decidable predicate on the naturals i.e.,

∀n(A(n) ∨ ¬A(n)),

such that the following disjunction doesn’t hold:

∀nA(n) ∨ ¬[∀nA(n)]

i.e., we do not posses yet a proof neither of ∀nA(n), nor of ¬[∀nA(n)]. E.g, we may
consider the predicate A(n) iff 2n is sum of two odds (Goldbach’s conjecture).
We then define B as follows:

<> ∈ B ⇔ ¬[∀nA(n)],
(n) ∈ B ⇔ A(n),

where (n) is a sequence of length 1, while it is irrelevant which other finite sequences
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belong to B. Then:

(i) B is a bar of ωω: Let α ∈ ωω. By the decidability of A(n), A(α(1))∨¬A(α(1)). If
A(α(1)), then α(1) ∈ B, hence α cuts B, while if ¬A(α(1)), there is a counterexample
to ∀nA(n), thus <> ∈ B i.e., α cuts B at the root <>.
(ii) B is not decidable: Suppose that it was. Then, <> would satisfy

(1) <> ∈ B ∨<> 6∈ B,

which by the definition of B amounts to:

(2) ¬[∀nA(n)] ∨ ¬¬[∀nA(n)].

Intuitionistically the following is proved:

(3) ¬¬[∀nA(n)]⇒ ∀n¬¬A(n),

while by the decidability of A(n) we get:85

(4) ∀n¬¬A(n)⇒ ∀nA(n).

By (2), (3) and (4) we get ∀nA(n) ∨ ¬[∀nA(n)], which by hypothesis is not true on A.
Therefore, B cannot be decidable.
(iii) B has no thin decidable sub-bar: If there existed such sub-bar B0, then

<> ∈ B0 ∨<> 6∈ B0,

would hold for B0. But then, with an argument similar to the one used in (ii), we reach
an absurdity about our knowledge of A.�
Thus, we showed that BT is intuitionistically unacceptable without decidability condi-
tion of bar B. Of course, classically it is still true, since decidability is trivially true,
while intuitionistically is unacceptable, since there are predicates like A. Actually, the
above counterexample is a weak counterexample. Although decidability of a ϕ-bar is
obvious, Brouwer’s proof of BT in [Brouwer 1981]) doesn’t mention B’s decidability,
therefore, by the previous proposition, it is false.
Kleene’s counterexample is quite expected, since in order to find a bound on the length
of sequences of a fan we have to be able to recognize when a sequence cuts the bar or
not. Brouwer never mentioned explicitly bar’s decidability, since the ϕ-bar he used is
always decidable. The above result though, is in accordance to the dependence, in the
proof of BT, of B0’s decidability on the decidability of B.

As we have already said in Paragraph 2, König’s lemma, that an infinite classical fan has
an infinite branch, has a highly non-constructive classical proof. A branch of a classi-
cal fan may have terminating branches, while an intuitionistic fan has non-terminating
branches86. The following proposition shows why König’s lemma is intuitionistically

85In (3) hypothesis ¬¬[∀nA(n)] means ¬[∀nA(n)] ⇒⊥. If we fix n, we show that ¬¬A(n) i.e.,
¬A(n)⇒⊥. But, if ¬A(n), then ¬[∀nA(n)], thus, by hypothesis we reach ⊥.
Regarding (4), it suffices to show that for each n, A(n). By the hypothesis of (4) though on that n,
we get ¬¬A(n), hence, by the decidability hypothesis on A we get A(n).

86As we have noted in Paragraph 5, although this difference has prevailed, Brouwer in some of his
formulations of the definition of a spread permitted terminating branches.
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unacceptable.

Proposition 13.2: There is a classical fan T for which König’s lemma is intuitionisti-
cally unacceptable.

Proof: Let T be the classical fan defined as the following tree: After root <> only
the constant sequences 0 and 1 start, one of which may terminate, without knowing
though, which one and when that may happen. This is achieved through an unsolved
problem, or through the will of the creating subject. E.g., let A be a decidable pred-
icate on natural numbers, such that we do not know a proof neither of ∀nA(n) nor
of ¬[∀nA(n)]. Suppose that if we find an odd n such that ¬A(n), then 1 terminates,
otherwise, if we find a proof of ∀nA(n), it is 0 that terminates. Both continue until the
knowledge of ∀nA(n) or ¬A(n), for some n, terminates one of them.
Obviously, T is a (classical infinite) fan, since if we suppose T is finite, then both
branches terminate, which is absurd, by the definition of ΛT . Intuitionistically speak-
ing though, T has no infinite branch, since we cannot know which of the two branches
is the non-terminating one. To know that presupposes that we know the answer to the
initial up till now unsolved problem about A(n). Classically, its solution is independent
from our knowledge of it, therefore one of the two branches is (logically) infinite, while
intuitionistically it is only impossible that both branches are terminating ones. To say
though, that one of them is infinite presupposes that we have determined exactly which
is the infinite one, something which is impossible.�
As we have already suggested, different versions of fan theorem have prevailed in post-
Brouwer intuitionistic literature. Moreover, these formulation of fan theorem are clas-
sically equivalent to König’s lemma, while, by the previous proposition that could be
intuitionistically rather “annoying”. The main reason for that was Kleene’s system FIM
of intuitionistic analysis in which Kleene’s fan theorem (KFT) has the following
formulation87:

(KFT ) (∀α ∈ 2ω)∃nR(α, n)⇒
(∃m) (∀α ∈ 2ω) (∃n) (∀γ ∈ 2ω) [mα = mγ ⇒ R(γ, n)]

where R(α, n) a relation between sequences and natural numbers.
Another form of fan theorem is found e.g., in [Beeson 1985] p.50, which we call mono-
tone fan theorem (MFT):

(MFT): Let R be a predicate on finite 0, 1-sequences such that:

(i) [(u ≺ v) ∧R(u)]⇒ R(v) i.e., R is a monotone predicate.
(ii) (∀α ∈ 2ω)(∃n)R(nα)

Then,
(∃m) (∀α ∈ 2ω) R(mα)

i.e., all finite sequences of length m satisfy predicate R.

Another formulation of fan theorem is found e.g., in [Troelstra, van Dalen 1988a]),
which we call decidable fan theorem (DFT):

(DFT): Let A(α) be an intuitionistic predicate on a fan T (not necessarily monotone
on the nodes of T ) such that:

87As we show in Proposition 8.1.7, it suffices to formulate fan theorem on the special fan 2ω.
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(i) A is decidable i.e.,

A(α1, α2, ..., αn) ∨ ¬A(α1, α2, ..., αn),

for each n and for each α in [T ].
(ii) (∀α ∈ [T ])(∃n)A(nα)

Then,
(∃N)(∀α ∈ [T ])(∃m ≤ N)A(mα).

I.e., all finite sequences of T satisfy predicate A for the first time before their length be-
comes N+1. Classically, the decidability condition A(α1, α2, ..., αn)∨¬A(α1, α2, ..., αn)
holds in a trivial way.

The following propositions concern the relation between the above formulations of fan
theorem.

Proposition 13.3: The following are only classically equivalent i.e., equivalent using
principles of classical logic, which are not accepted in intuitionistic logic.

(i) KL.
(ii) DFT.

Proof: We use KL in the form KL2, according to which, if all branches of a fan T are
finite, then T has a branch of maximum length.
(i)⇒ (ii) Through fan T and predicate A we define the tree

TA = {(α0, α1, ..., αm) ∈ T : ∀k ≤ m ¬A(α0, α1, ..., αk)}

i.e., TA contains all elements of T all the initial segments of which are not A-satisfiable.
TA is a fan, since it is a sub-tree of the fan T , and each branch of TA is finite, since, by
the hypothesis on A, each sequence of T will satisfy A at some moment. Therefore, TA
satisfies the hypothesis of KL2.
Suppose that T violates the conclusion of DFT i.e.,

¬[(∃N)(∀α ∈ [T ])(∃m ≤ N)A(mα)]⇔ [(∀N)(∃α)(∀m ≤ N)¬A(mα)].

Thus, for each N there is a branch of T which belongs to TA, since for each m ≤ N ,
¬A(α0, α1, ..., αm). Hence, TA has not a branch of maximum length, something which
violates KL2. So, we have shown that it is impossible the conclusion of DFT to be
violated, which classically means that the conclusion of DFT actually holds.

(ii) ⇒ (i) Suppose T is a fan all the branches of which are finite. A branch of T is
called maximal iff it is not extended. We define the following predicate A on T :

A(α0, α1, ..., αm) iff (α0, α1, ..., αm) is a maximal branch of T .

We extend the finite nodes of T adding constantly a symbol ∗ such that a new tree T ∗

is formed the infinite branches of which are of the form

(α0, α1, ..., αm, ∗, ∗, ∗, ...),

where (α0, α1, ..., αm) is a maximal branch of T . T ∗ is a fan and A is defined on T ∗’s
nodes too: if u is node of T ∗, then A(u) iff u is T ∗-maximal i.e., v � u ⇒ v contains
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the ∗ symbol.
Since (∀α ∈ [T ∗])(∃n)A(nα), the conclusion of DFT guarantees that there is a branch
of T of maximum length.�
Since DFT is classically equivalent to intuitionistically unacceptable KL, it is even
more suitable that BIA includes BFT, which is not classically valid. As the following
proposition shows though, DFT “entails” BFT, given an intuitionistic function ϕ. In
the literature we find it in the form

DFT + CP ⇒ BFT,

since it is not a definition of an intuitionistic function that founds this concept, but CP
as an axiom. In our framework though, the starting point of any conclusion regarding
intuitionistic functions is their definition.

Proposition 13.4: If ϕ : T → ω is an intuitionistic function on a fan T , then, if DFT
is typically applied, BFT is derived.

Proof: By the definition of a function ϕ : T → ω the value ϕ(α) of a sequence α in T
is determined by some initial segment nα of α. Let A be the following predicate on the
nodes of T :

A(nα) iff nα is critical to ϕ.

A is an intuitionistic predicate and a monotone one, since an extension in T of a critical
to ϕ∗ node is also critical. Also, (∀α ∈ T )∃nA(nα), since ϕ is fully defined on T and
ϕ is an intuitionistic function. Clearly, the conclusion of DFT gives the conclusion of
BFT, since predicate A is monotone.�
We see that we have to add the non-classical concept of intuitionistic function to the
classically accepted DFT in order to get the non-classical BFT. I.e., DFT is a classical
proposition which entails BFT, only if we limit the concept of classical function to that
of intuitionistic one.

Kleene’s system FIM of intuitionistic analysis includes the following two principles-
axioms:

(i) Kleene’s Continuity Principle (KCP):

(KCP ) (∀α ∈ 2ω) ∃nR(α, n)⇒ [∀α ∃m,n ∀γ (mα = mγ ⇒ R(γ, n))].

(ii) Decidable Bar Induction (DBI): If M is a spread and
(I) (∀α ∈M) (∃n)(nα ∈ B) ∧
(II) (∀u ∈M) (u ∈ B ∨ u /∈ B) ∧
(III) (∀u ∈M) (u ∈ B ⇒ u ∈ W ) ∧
(IV) (∀u ∈M) (∀k(u a k ∈ W )⇒ u ∈ W ),

Then, <> ∈ W ,

where u a k is an immediate successor of node u88.

Among the above axioms of FIM, KCP is the only non-classical principle of FIM, while
DBI, which codifies Brouwer’s proof of BFT avoiding Brouwer’s dogma, is classically

88We use again the same symbol α ∈M and u ∈M for infinite and finite M -sequences.
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true.
Interpreting the hypotheses of DBI we get:

(I) (∀α ∈M) (∃n)(nα ∈ B): the species B is a bar of spread M .
(II) (∀u ∈M) (u ∈ B ∨ u /∈ B): bar B is decidable.
(III) (∀u ∈ M) (u ∈ B ⇒ u ∈ W ): B is a subspecies of a species W of finite -
sequences.
(IV ) (∀u ∈ M) (∀k(u a k ∈ W ) ⇒ u ∈ W ): if all immediate M -successors of an M -
node u satisfy property W , then W is inherited to u.
The conclusion of DBI expresses the fact that W is inherited to the root <> of spread
M . Note that species W need not be decidable.

DBI is an inverse kind of induction. While in traditional induction on naturals there is
a fixed initial point 0 or 1, in DBI there is a fixed final point, the root <>. The basis of
DBI is condition (∀α ∈ M)∃n(nα ∈ B). The constructive content of DBI is discussed
in Paragraph 15. The general idea of DBI is that starting from the elements of B which
satisfy property W , we “go down” through (∀u ∈M) (∀k(u a k ∈ W )⇒ u ∈ W ), and
finally we reach <> satisfying W too. This route is a generalization of the root of
a proof Ru in Brouwer’s proof of BFT. The intuitionistic legitimacy of post-Brouwer
principle DBI is seemingly justified by the following proposition.

Proposition 13.5: DBI entails Brouwer’s Bar theorem BBT, which in turn entails
BFT (Proposition 11.7).

Proof: Defining species W through u ∈ W iff u has the well-ordering property for
nodes, we get the conclusion of BBT i.e., that the root <> has the well-ordering prop-
erty too.�
As we have already mentioned, DBI holds classically. After the proof of this fact we
discuss it from the intuitionistic point of view.

Proposition 13.6: DBI holds classically.

Proof: Let properties B and W , satisfying hypotheses of DBI. Suppose that <> /∈ W .
Hence, there is a natural number α1 such that the 1-sequence (α1) is M -accepted and
(α1) /∈ W . Moreover, we may consider α1 as the minimum natural with that property.
Sequence (α1) has for the same reason an immediate successor node (α1, α2) which does
not satisfy W either. In that way there exists classically a sequence, each initial seg-
ment of which is not in W , which is absurd, since this sequence cuts B at some point ,
therefore it has a node in W . Hence, <> ∈ W .�
Obviously, the above proof uses the same choice principle and the same philosophy of
mathematical existence found in the proof of König’s lemma. Also, we find in it the
same contraposition with the one used in the classical proof of fan theorem through
König’s lemma. Actually, Dummett, in [Dummett 2000] p.56, considers this fact as an
encouraging element fo the intuitionistic validity of DBI.
Hence, classically, given the hypotheses of DBI, the following implication holds:

<> /∈ W ⇒ ∃k (k) /∈ W,

where (k) M -accepted 1-sequence. Intuitionistically though, only

<> /∈ W ⇒ ¬(∀k (k) ∈ W )
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holds. In order to accept the first implication, Markov’s principle and decidability of
W are needed. We just note here that Brouwer didn’t accept Markov’s principle and
the decidability of W is not in the hypotheses of DBI. Even if though, the decidability
of W has to be accepted, since at some moment for the decidable W a natural k must
occur for which (k) /∈ W (otherwise ∀k (k) ∈ W would hold), one could conclude only

¬(<> /∈ W ),

since an on-going sequence is constructed, no initial segment of which belongs to B.
But what was needed was to conclude <> ∈ W .
Even if we limit to a fan, and then only a finite number of immediate successors needs
to be checked each time and Markov’s principle is avoided, we only conclude again
that ¬(<> /∈ W ), with W being decidable. If W is not decidable and there are two
immediate successor nodes of u for which we do not know if they belong to W or not,
even if we know that ¬(∀k u a k ∈ W ), we cannot conclude that ∃k u a k /∈ W , since
we cannot say which one of the two successor nodes is the one in W .
Someone could say that adding the decidability of W one is very close, if the spread
is a fan, to the intuitionistic proof of DBI. Lack of decidability though is essential.
Moreover, property W of Brouwer’s proof of BFT, that node u has the well-ordering
property of nodes, is not decidable.

We examine now if the following conjunction is accepted:

(∗) <> ∈ W ∧ ∃k (k) /∈ W.

If we accept Markov’s principle, or if we study a fan with a decidable W , then with the
argument of the previous classical proof, a potentially infinite sequence is constructed
which has as 1-segment (k) and none initial segment of which is in W . Hence, <> ∈ B.
If B was defined such that <> /∈ W , we reach an absurdity.
Thus we see, that when W and B satisfy healthy conditions and we work in a fan, then
the conclusion of DBI guarantees that all nodes “under” the nodes of B belong to W .
Of course, (∗) doesn’t hold generally, since if B = W = {<>}, the hypotheses of DBI
are trivially satisfied, while no node (k) belongs to W .

Proposition 13.7: Assuming KCP, the following are equivalent:
(i) Kleene’s fan theorem KFT.
(ii) DFT (2ω).

Proof: (i) ⇒ (ii) Let A be a decidable intuitionistic predicate such that (∀α ∈
2ω)(∃n)A(nα). We then define the following relation between α, n:

Σ(α, n) ⇔ n is the least natural: A(nα).

Σ(α, n) is well-defined, since A is decidable and (∀α ∈ 2ω)(∃n)A(nα). By the conclusion
of KFT we get that

(∃m) (∀α ∈ 2ω) (∃n) (∀γ ∈ 2ω) [mα = mγ ⇒ Σ(γ, n)].

Hence, all m-equal to α sequences have their n-initial segment as the least initial
segment satisfying A. If n ≤ m, or even if n > m, n is a bound for all m-equal
to α sequences. Since sequences of length m are finite, setting N the maximum
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value of bounds n for each sequence of length m, N is the global bound satisfying
(∃N) (∀α ∈ 2ω)(∃m ≤ N)A(mα).
(ii)⇒ (i) Suppose (∀α ∈ 2ω)∃nR(α, n). We define predicate S(mα) according to

S(mα)⇔ (∃n) (∀γ ∈ 2ω) [mα = mγ ⇒ R(γ, n)].

Then, (∀α ∈ 2ω)(∃m)S(mα), by KCP. The conclusion of DFT (2ω) for S gives the con-
clusion of KFT for R(α, n), since if α, γ share the same N -initial segment, where N the
global bound determined by DFT, then α, γ share the same m-initial segment, where
m ≤ N . That gives R(γ, n).�
KCP was used only in the (ii) ⇒ (i) direction, therefore, KFT is more general, on its
own, than DFT.

Another variation of DBI found in the literature is the monotone bar induction
principle (MBI), where the decidability of bar B in DBI is replaced by its mono-
tonicity. Namely, if M is a spread and
(I) (∀α ∈M)(∃n)(nα ∈ B) ∧
(II) (∀u ∈M) (∀v ∈M) (u � v) (u ∈ B ⇒ v ∈ B) ∧
(III) (∀u ∈M) (u ∈ B ⇒ u ∈ W ) ∧
(IV) (∀u ∈M) (∀k(u a k ∈ W )⇒ u ∈ W ),

Then, <> ∈ W ,

MBI also holds classically, repeating the argument in the proof of Proposition 13.6. The
two induction principles are equivalent.

Proposition 13.8: MBI entails DBI.

Proof: Supposing (I)-(IV) of DBI and assuming MBI i.e., monotonicity, we reach the
conclusion of DBI.
We define two new predicates B

′
and W

′
from B and W as follows:

u ∈ B′ ⇔ ∃v, v � u : v ∈ B,
u ∈ W ′ ⇔ u ∈ W ∨ u ∈ B′ .

Obviously, u ∈ B ⇒ u ∈ B′ . We show that B
′

and W
′

satisfy the hypotheses of MBI.
(∀α ∈M) ∃n(nα ∈ B

′
): By condition (I) of DBI, ∃n(nα ∈ B), but then nα ∈ B

′
too.

(∀u ∈ M) (∀v ∈ M) (u � v) (u ∈ B′ ⇒ v ∈ B′): Since u ∈ B′ , some ancestor node of
u belongs to B, which is though an ancestor of v too.
B
′

is the first monotone property one thinks to define from B.
(∀u ∈M) (u ∈ B′ ⇒ u ∈ W ′

): It holds trivially by the definition of W
′
.

(∀u ∈ M) (∀k(u a k ∈ W ′
) ⇒ u ∈ W ′

): We first note that B
′

is decidable, since B is
decidable, by checking the ancestors of a node with respect to B.
Let u ∈ B′ . Then, directly, u ∈ W ′

.
Let u /∈ B′ and suppose u a k ∈ W ′

, for each k. By the definition of W
′

though,

(1) u a k ∈ W ′ ⇒ [u a k ∈ W ∨ u a k ∈ B′ ].

Also,
(2) u a k ∈ B′ ⇒ u a k ∈ B,

otherwise, if u a k /∈ B, the ancestor of u a k in B is � u, hence u ∈ B
′
, which is

absurd, since, by hypothesis, u /∈ B′ . (III) of DBI gives

(3) u a k ∈ B′ ⇒ u a k ∈ W.
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Because of (3), (1) becomes

(4) u a k ∈ W ′ ⇒ u a k ∈ W.

Applying condition (IV) of DBI on (4), we get u ∈ W , which gives, by the definition of
W
′
, u ∈ W ′

.
Thus, B

′
and W

′
satisfy the hypotheses of MBI, and hence <> ∈ W

′
. But then,

<> ∈ W , or <> ∈ B′ . Since, <> ∈ B′ ⇒ <> ∈ B, we also get <> ∈ W .�
For a partial inverse see Proposition 13.11.
The above definition of property W

′
is not the only choice we have, as we show in next

proposition.

The induction principle of a classical bar (CBI) is DBI without the decidability
condition on B, which is classically trivially true. I.e., CBI is the following induction
scheme. If M is a spread and
(I) (∀α ∈M)(∃n)(nα ∈ B) ∧
(II) (∀u ∈M) (u ∈ B ⇒ u ∈ W ) ∧
(III) (∀u ∈M) (∀k(u a k ∈ W )⇒ u ∈ W ),

Then, <> ∈ W ,

Classically, DBI is equivalent to CBI. It is interesting to see that defining a new W
′

we
get classically CBI from MBI, but not intuitionistically (Proposition 13.12).

Proposition 13.9: Classically, MBI entails CBI.

Proof: Following the previous line of proof, B
′

is the same, while W
′

is defined by

u ∈ W ′ ⇔ ∃v, v � u : v ∈ W.

Obviously, u ∈ W ⇒ u ∈ W ′
. We show that B

′
and W

′
satisfy the hypotheses of MBI.

Hypotheses (∀α ∈ M)(∃n)(nα ∈ B
′
) and (∀u ∈ M) (∀v ∈ M) (u � v) (u ∈ B′ ⇒

v ∈ B′) are proved the same way.
(∀u ∈ M) (u ∈ B′ ⇒ u ∈ W ′

): If u ∈ B′ , then, by definition of B
′
, ∃v, v � u : v ∈ B

and by CBI, v ∈ W , therefore u ∈ W ′
, by the definition of W

′
.

(∀u ∈ M) (∀k(u a k ∈ W ′
) ⇒ u ∈ W ′

): Let u a k ∈ W
′
. By the definition of W

′

∃v, v � u a k : v ∈ W . If there is k, such that v � u a k and v ∈ W , then, by
definition of W

′
, u ∈ W ′

. If for all k, u a k ∈ W , then, by the last hypothesis of CBI,
we get u ∈ W , hence u ∈ W ′

.
Thus, by the conclusion of MBI, <> ∈ W ′

, therefore, <> ∈ W , since root <> is the
only initial node of itself.�
The non-intuitionistic step of the above proof is the disjunction

(∀k u a k ∈ W ) ∨ (∃k u a k /∈ W ).

As it is expected, Kleene’s counterexample suggests that CBI is not intuitionistically
accepted.

Proposition 13.10: CBI cannot be intuitionistically accepted.

Proof: Let M be ωω and A Kleene’s decidable predicate, for which ∀nA(n)∨¬[∀nA(n)].
Again we define B as follows:

<> ∈ B ⇔ ¬[∀nA(n)],
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(n) ∈ B ⇔ A(n), where (n) an 1-sequence.
Each extension of an 1-sequence (n), for which A(n) holds, belongs to B.

We also define W by
u ∈ W ⇔ ∃v, v � u : v ∈ B.

Since, as it has been shown in Kleene’s counterexample, B is a bar, then (∀α ∈
ωω)(∃n)(nα ∈ B). Also, B is not decidable. Trivially, (∀u ∈ ωω) (u ∈ B ⇒ u ∈ W ).
Let u such that, for each k, u a k ∈ W .
If the length of u is at least 1, then u a k in W means that an ancestor of u a k
belongs to B. This cannot be <>, since then we would know ¬[∀nA(n)]. Hence, the
ancestor of u a k, which belongs to B, satisfies A(1uak). But then, A(1u) too, and then
u ∈ B ⇒ u ∈ W .
If u is root <>, then hypothesis <> a k ∈ W , for each k, means that (k) ∈ W , which
amounts to (k) ∈ B, for each k. This is equivalent to our knowledge of ∀nA(n), which
is impossible. Therefore, while hypotheses of CBI are satisfied, its conclusion <> ∈ W
cannot be accepted, because this presupposes our knowledge either of ∀nA(n) or of
¬[∀nA(n)].�
Proposition 13.11: DBI and CCP (Continuity Choice Principle) entail MBI.

Proof: Let B and W properties satisfying MBI. We define predicate A(α, n) by

A(α, n)⇔ nα ∈ B,

which is monotone, (A(α,m), if m > n), since B is monotone. Obviously, (∀α ∈
M)(∃n)A(α, n), since (∀α ∈M)(∃n)(nα ∈ B). Applying CCP on A(α, n),

(∀α ∈M)(∃n)A(α, n)⇒ (∃θ)(∀α)A(α, θ(α)),

where intuitionistic function θ is activated for the first time by the initial segments of
sequences α for which we know that belong to B. We also define a new property B

′
by

u ∈ B′ ⇔ ∃v, v � u : v activates θ∗.

B
′

is decidable, since, if u is an -node, starting from u and going back to its ancestors,
we check if they activate θ∗ or not. Although B may be non-decidable, we formed
through B a decidable species of exactly those nodes which contain all our knowledge
regarding the expression (∀α ∈M)(∃n)(nα ∈ B).
Also, if W is the species in the hypotheses of MBI, then u ∈ B′ ⇒ u ∈ B, since there
is an ancestor v of u which belongs to B and B is monotone, therefore u ∈ W . Also,
(∀u ∈M) (∀k(u a k ∈ W )⇒ u ∈ W ) is satisfied by the hypothesis of MBI.
Hence, the hypotheses of DBI are satisfied, and the conclusion <> ∈ W of MBI is
derived.�
Proposition 13.12: Intuitionistically, MBI ⇒ CBI is unacceptable.

Proof: If that implication was intuitionistically true, then by DBI and CCP and the
implication DBI + CCP ⇒ MBI, then DBI + CCP ⇒ CBI, something which is
unacceptable by Proposition 13.10.�
Proposition 13.13: The following implications hold:

(i) DBI ⇒ DBT .
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(ii) MBI ⇒MFT .
(iii) CBI ⇒ CFT .

Proof: (i) Let the hypotheses of DFT are given. We define properties B and W as
follows:

(I) u ∈ B ⇔ A(u).
(II) u ∈ W ⇔ (∃n)(∀α ∈ u)(∃m ≤ n)A(mα).

Then,
<> ∈ W ⇔ (∃N)(∀α ∈ T )(∃m ≤ N)A(mα),

which is the conclusion of DFT for T .
Trivially, B is decidable, implication u ∈ B ⇒ u ∈ W is satisfied and also property
(∀α)(∃n)nα ∈ B. Let u be a node such that u a k ∈ W , for each k. This means that
each sequence extending u a k satisfies A for some initial segment of length ≤ nk, for
some bound nk. Since our spread is a fan, there are finite immediate successor nodes
u a k of node u. If N is the maximum of all nk, then u ∈ W , since a sequence extending
u extends some node among those finite nodes u a k, therefore, it satisfies A before its
length becomes N + 1. As we have already seen, the conclusion of DBI gives directly
the conclusion of DFT.

(ii) The proof is similar to that of previous case, defining

(I) u ∈ B ⇔ R(u).
(II) u ∈ W ⇔ (∃n)(n > l(u)) : [∀v v � u ∧ l(v) = n]⇒ R(v),

where l(u) is the length of node u and R the monotone predicate of hypothesis of MFT.
Also,

<> ∈ W ⇔ (∃n)(n > 0) : [∀v l(v) = n]⇒ R(v).

I.e., (∀α ∈ 2ω)R(nα), the conclusion of MFT.
Case (iii) is proved exactly like (i).�
Based on (i) of previous proposition, DBI with KCP entail KFT (in FIM), using Propo-
sition 13.7.

Let DBI(F), MBI(F) be the induction principle DBI and MBI on fans. What we have
actually showed in Proposition 13.13 are the implications

DBI(F )⇒ DFT ,
MBI(F )⇒MFT.

The inverse implications also hold, something with special philosophical significance.

Proposition 13.14: The following implications hold:

(i) DFT ⇒ DBI(F ).
(ii) MFT ⇒MBI(F ).

Proof: (i) Let the hypotheses of DBI(F) and A a decidable predicate defined by

A(u)⇔ u ∈ B.

A obviously satisfies hypothesis (∀α ∈ F )(∃n)A(nα), hence, by the conclusion of DFT,
there is a natural number N , such that all sequences satisfy A before their length be-
comes N + 1. Thus, the nodes of F which satisfy B form a polygon line connecting

93



the edges of F . If we consider for simplicity (although the argument is the same in the
general case too) the fan 2ω, we reach again the conclusion <> ∈ W .
In case (ii) we find in a similar way a tree leading to <> ∈ W too.�
The last two propositions show that the intuitionistic truth of DBI and MBI are tightly
connected with the truth of generalized forms of fan theorem DFT and MFT. It remains
to study (see Paragraph 14) the relationship between BFT and its generalizations DFT,
MFT, or DBI and MBI.

14. Brouwer’s dogma and the theorem of Martino and Giaretta. Brouwer’s
proof of BFT is generally considered problematic, for not one reason only. There are
three main kinds of critique in the literature, and we also offer another one in Paragraph
15. These are:

(I) Critique of the supposedly metamathematical character of Brouwer’s proof of BFT
because of the analysis of Ru as a tool for the derivation of its conclusion.
(II) Critique of Brouwer’s dogma BD. Again BD can be considered of metamathemat-
ical character.
(III) Characterization of Brouwer’s proof as cyclic, since, through Martino-Giaretta
theorem (MGT), Brouwer’s assumption BD is equivalent to the inductive argument of
his proof.

Regarding (I), Heyting’s answer [Heyting 1966 p.45] is the following:

[But in almost every case it is not the supposed construction itself that
plays a part in the proof, but only its result. The new feature in the proof
of the fan theorem is, that the possible form of the supposed construction
is explicitly involved in it. If we are well aware that the hypothesis of a
theorem consists always in the assumption of a previous execution of some
construction, we can offer no objection against the use of considerations
about the way in which such a construction can be performed as a means
of proof.]

This response is all that Heyting offers to objection (I), saying nothing on the question
whether it is possible to handle the multiplicity of possible constructions of hypothesis of
BFT without incorporating something like BD. As Epple says (in [Epple 1997] pp.164-
5):

This crucial passage (in our language, from the existence of R<> to the
existence of a canonical proof of the securability of <>) is evidently a meta-
mathematical belief, a belief about what it means to have a proof (R<>).
This leaves Brouwer’s whole argument in an awkward position. As long
as intuitionistic mathematics is not formalized, such a meta-mathematical
belief must necessarily remain informal. Hence a crucial theorem of intu-
itionistic mathematics depends essentially on an informal belief. In prin-
ciple, such a belief does not conflict with the intuitionistic project. But it
is legitimate to ask whether the meta-mathematical belief in question is as
transparent as Brouwer’s epistemological standards require it to be.]

Brouwer considered BD natural, though “as late as 1952 had to admit that a simpler
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proof (of BFT) had eluded him”89. Also, van Atten90 doesn’t accept Epple’s general
tenet, believing that Brouwer’s proof doesn’t betray the intuitionistic principles, with-
out giving though, some arguments in favor of his opinion.
The obscurity of BD justified Kleene’s reaction to use the scheme of decidable bar in-
duction (DBI) as an axiom. In case u ∈ W means that u has the w.o.p. for nodes,
then BFT is directly derived. But to prove BFT through an axiom violates basic prin-
ciples of Brouwer’s mature intuitionism framework. Brouwer always searched for a
conceptual proof of FT, not an axiomatic one. Kleene justified this seemingly evasion
of his to postulate an axiom schema by his independence result of bar induction from
the other intuitionistic principles91. As we discuss in Paragraph 13, this independence
of DBI from the other principles of FIM is an expression of the difference between
bar induction and the rest, derived by definitions, “principles” of BIA. This difference
though, depends on our analysis of another argument against the intuitionistic validity
of Brouwer’s proof of BFT, found in Paragraph 15.

The following analysis of BD and MGT is based on the original paper of Martino and
Giaretta, slightly adopted to our language. Martino and Giaretta give the following
precise inductive definition of a canonical proof (c.p).

(i) An η-inference

u secured
u securable

is a c.p of “u is B-securable”, or for simplicity “u is securable”.
(ii) If Ru is a proof of “u is securable”, then

Ru
uak securable

is a c.p of “u a k is securable”, provided u a k ∈M .
(iii) If Ruak is a c.p of “u a k is securable”, then

Rua1,Rua2,...

u securable

is a c.p of “u is securable”.

Brouwer’s dogma has then the following precise formulation, since c.p is precisely de-
fined:

BD: If <> is B-securable, then there exists a c.p of “<> is B-securable”.

If we define the species IndB by:

u ∈ IndB ⇔ ∃c.p of “u is securable”,

then, by (i)-(iii), IndB is the η, ζ,z-closure of bar B i.e.,

(I) u ∈ B ⇒ u ∈ IndB.
(II) u ∈ IndB ⇒ u a k ∈ IndB.
(III) ∀k u a k ∈ IndB ⇒ u ∈ IndB.

(I) is justified as follows: Since u ∈ B an ancestor v of u belongs to B0 i.e., u is se-
cured, hence, by (i), an η-inference is a c.p of “u is secured”. (II) and (III) are direct

89In [van Stigt 1990] p.379.
90In [van Atten 2004] p.40, p.61.
91See [Kleene, Vesley 1965] p.51.
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translations of (ii) and (iii) respectively. Hence, Brouwer’s dogma has also the following
formulation:

BD: If <> is B-securable, then <> ∈ IndB.

As we have seen in Paragraph 13, Kleene’s counterexample (KC) refuted Bar theo-
rem without decidability condition. Equivalently, KC refutes bar induction scheme BI,
where BI is formulated here (as in [Martino, Giaretta 1979]) as follows:

BI: If <> is B-securable, then B inductively bars <>,

where “B inductively bars <>” means that <> belongs to Bz, the η and z-closure of
B i.e.,

(i) u ∈ B ⇒ u ∈ Bz.
(ii) ∀k u a k ∈M, u a k ∈ Bz ⇒ u ∈ Bz92.

As in Paragraph 13, KC refutes BI: if ωω is the spread M and A is a decidable pred-
icate on the naturals i.e., ∀n(A(n) ∨ ¬A(n)), such that we do not posses yet a proof
neither of ∀nA(n), nor of ¬[∀nA(n)], we then define B by

<> ∈ B ⇔ ¬[∀nA(n)] and (n) ∈ B ⇔ A(n).

Obviously, <> is B-securable, since, if α is any sequence, then A(n) ∨ ¬A(n), where
(n) = (α(0)), the 1-segment of α. If A(n), then (n) ∈ B, while, if ¬A(n), then
¬[∀nA(n)] i.e., <> ∈ B. Hence, each α cuts B.
But <> /∈ Bz, since if that was not the case we would know it through an η or z-
inference.
If <> belongs to B, then we would know that ¬[∀nA(n)], which is impossible.
If we have <> ∈ Bz because ∀n(n) ∈ Bz, then we reach the impossible knowledge
∀nA(n), since

(n) ∈ Bz ⇒ (n) ∈ B.

If we suppose ¬A(n), then we get ¬[∀nA(n)], which is impossible. But, by the decid-
ability of A, we then get A(n) i.e., (n) ∈ B. If that is the case for each n we reach the
impossible knowledge ∀nA(n).

The above negation of BI by KC was considered by Dummett, in [Dummett 1977], as
a refutation of BD. His point was that since Brouwer’s 1924 proof of BFT excludes all
ζ-inferences and makes no reference either to the decidability or to the monotonicity of
B, it is certainly wrong because of KC. Dummett concluded that what is wrong with
it must be BD, the only unjustified assumption of the proof, and he considered KC
a refutation of it. Martino and Giaretta criticized Dummett’s interpretation of KC, a
critique accepted later by Dummett (in [Dummett 2000]).
Martino and Giaretta provided to the hypothesis <> is B-securable a c.p, in accordance
to their precise definition of a c.p. This c.p is a description of how <> is B-securable,
where B is the one defined in KC, combining η,z and ζ-inferences.

<> is B-securable because of a z-inference, where each (n) is securable, either because
(n) cuts B, if A(n), or, if ¬A(n), <> cuts B, therefore, by an η-inference, <> ∈ Bz
and then, by a ζ-inference, (n) ∈ Bz.

92If B is monotone or decidable, we get MBI or DBI respectively.
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Therefore, Martino and Giaretta conclude that KC does not refute BD but the uncon-
ditional eliminability of the ζ-inferences from a c.p, since the above c.p can’t avoid the
ζ-inference in case, which cannot be excluded, that ¬A(n), for some n.
This exclusion is possible if hypotheses of monotonicity or decidability are added to B.

Proposition 14.1: (i) If u ∈ IndB and B is monotone, then u ∈ Bz.
(ii) If <> ∈ IndB and B is decidable, then <> ∈ Bz.

Proof: (i) Since (I) and (III) of inductive definition of IndB are same to (i) and (ii)
respectively of the inductive definition of Bz, it suffices to show that Bz is ζ-closed
i.e., u ∈ Bz ⇒ u a k ∈ Bz. But u ∈ Bz means that u ∈ B, or for each k, u a k ∈ Bz.
If u ∈ B, then, by monotonicity of B, u a k ∈ B, hence u a k ∈ Bz. If for each k,
u a k ∈ Bz, then automatically we get what we want. Thus we have proved that under
monotonicity hypothesis of B

IndB = Bz.

(ii) A node u is called pre-barred by B iff an ancestor v of u belongs to B. Then, we
prove inductively:

(∗) u ∈ IndB ⇒ u ∈ Bz, or u is pre-barred by B.

By the definition of IndB, if u ∈ B, then u ∈ Bz and u is pre-barred.
If u = v a k and v ∈ Bz, or v is pre-barred, then we show the same for u examining
each case separately. If v ∈ Bz because v ∈ B, then u is by definition pre-barred. If
v ∈ Bz because v ∈ Bz −B, then the only way for that is that for each k, v a k ∈ Bz,
therefore, u ∈ Bz too.
If u a k ∈ IndB, for each k, then we work as follows: u is pre-barred or not, since we
can check in finite time each ancestor v of u, whether it is in B or not, because of the
decidability of B. If u is pre-barred, then we have reached our conclusion. If not, then,
by the inductive hypothesis, each u a k ∈ Bz or it is pre-barred. If u a k is pre-barred,
for some k, then u a k ∈ B, since u is considered not pre-barred. Hence, u a k ∈ Bz.
Therefore, u a k ∈ Bz, for each k, and then u ∈ Bz. Note that in any case we know
exactly which part (or parts) of the disjunction is satisfied, as the BHK-interpretation
of disjunction demands.
Applying (∗) on the root <>, we get, by hypothesis, that <> ∈ Bz or <> is pre-barred
i.e., <> belongs to B. Therefore, in any case <> ∈ Bz.�
By BD, if <> is B-securable, then <> ∈ IndB, hence, adding monotonicity (Proposi-
tion 14.1(i)) or decidability (Proposition 14.1(ii)) to B, then <> ∈ Bz i.e., <> belongs
to the η,z-closure of B and the ζ-inferences are indeed eliminable.

Proposition 14.2 Martino-Giaretta theorem (MGT): BD is equivalent to MBI.

Proof: Suppose BD and that the root <> is securable under monotone B. By BD,
<> ∈ IndB, and by Proposition 14.1(i), <> ∈ Bz, since B is monotonic.
Suppose MBI and that <> is B-securable. Let Bζ be the monotonic closure of B i.e.,

(i) u ∈ B ⇒ u ∈ Bζ .
(ii) u ∈ Bζ ⇒ u a k ∈ Bζ .

Since <> is B-securable, <> is Bζ-securable too. Since Bζ is, by its definition, a
monotone bar, applying MBI on Bζ we get that <> ∈ Bζz. However, as we concluded
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in the proof of Proposition 14.1(i),

Bζz = IndBζz = IndB,

since Bζ is the ζ-closure of B and hence, Bζz is the η, ζ and z-closure of B, therefore
Bζz is identical to IndB.�
Note that BD entails DBI by direct application of the syllogism of the first implication
of the above proof, where monotonicity of B is replaced by its decidability and Propo-
sition 14.1(ii) is used instead of Proposition 14.1(i).
By MGT, Martino and Giaretta concluded that

[Since BD and MBI are equally reliable, Dummett’s claim that it is conve-
nient to assume MBI directly as an axiom, in order to avoid the problematic
character of BD, turns out to be quite groundless ... We have two further
remarks to make about the idea, suggested by Dummett, that BD would
be an ad hoc axiom. First of all BD seems to express correctly Brouwer’s
intuition ... that the knowledge that u /∈ B is barred must be based on an
examination of its surrounding nodes. On the contrary this intuition is lost
in the bar theorem, in which no explicit reference is made to the predecessor
of u. In the second place, even if no more evidence is attributed to BD than
to MBI, or one prefers to ignore the problem of evidence, BD seems to us
interesting in itself. While, in fact, the bar definition involves the notion
of infinite sequence, this notion does not occur at all in the definition of
IndB, which is stated entirely in terms of finite sequences. Thus, BD says,
in effect, that the bar notion, even for a B such that BI does not hold, can
be expressed in terms of finite sequences. In this sense, BD can be regarded
as a generalization of MBI.]

Although Martino and Giaretta regard BD fairly plausible, provided that B can be de-
fined without reference to the concept of infinite sequence, we see MGT as an indication
that if MBI is problematic from the intuitionistic point of view, as we show in the next
paragraph, this problematic character of MBI is transferred to BD too.

15. Another argument against the intuitionistic validity of Brouwer’s proof
of Fan theorem. As we described in previous paragraph, up till now the problem with
Brouwer’s proof of BFT was mainly centered around the incompatibility of BD with
Brouwer’s epistemological declarations. Although we agree with Epple on his critique
on the transparency of DB, someone could insist, like van Atten, that Brouwer’s proof
is intuitionistically clear. Brouwer after all, supported the idea that DB is transparent
enough or that it is a matter of some kind of intuition in order to be accepted.
In our view, there is a serious flow in Brouwer’s argumentation and most important, this
flow derives from the intuitionistic point of view. As we have described in Paragraph
11, the main idea of Brouwer’s proof of BFT is the following:

Proof Ru of the securability of node u starts with the securability of the elements of
B0 (the securability of the, in principle, infinite nodes u /∈ M is not that essential).
Through ζ-inferences, and mainly through z-inferences, and since Ru has the preser-
vation property, the w.o.p.n is actually transferred from the premisses nodes to the
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conclusion nodes of Ru. Especially, w.o.p.n is transferred to the final conclusion node
u of Ru.

The often discussed quote 7 of Brouwer (in [Brouwer 1927] p.460) is characteristic. Ac-
cording to it, that node u has the w.o.p.n is something that someone can see, if thinks
intuitionistically, and the whole proof is not that necessary93.

[When carefully considered from the intuitionistic point of view, this se-
curability (he means Ru) is seen to be nothing than but the property (he
means the w.o.p.n) defined by the stipulation that it shall hold for every
element of B0

94 and for every inhibited element of ω<ω95, and that it shall
hold for an arbitrary (a1, a2, ..., an) as soon as it is satisfied, for every k, for
(a1, a2, ..., an, k). This remark immediately implies the well-ordering prop-
erty for an arbitrary (a1, a2, ..., an). The proof carried out in the text for the
latter property, however, seems to be of interest nevertheless on account of
the propositions contained in its elaboration]

In our view though, Brouwer’s description of Ru is not constructively innocent.

The real problem in the proof of BFT is that B0 may have infinite elements and it is not
justified that Ru starts and, most crucially, ends the way Brouwer says it does. If Ru is
a man-made proof, as it has to be from the intuitionistic point of view, starting Ru from
η-inferences, we may need, in general, absolutely infinite time in order to “go down” to
nodes of less and less length and finally to node u. In order to consider Ru completed,
Brouwer employs the intuitionistically unaccepted concept of absolute infinity.

We may imagine a thin bar of fan as a line segment, or a polygon line segment connecting
the ends of the fan. All such thin bars contain a node of maximum length, hence the
above down to u procedure seems plausible. In general case though, a thin bar may
“consist” of nodes of ever growing length, without being able to “draw” such a segment.
We call such a bar the (im)possible thin bar K0. Brouwers description of the proof R<>

bypasses this possibility, which is half of the essence of the problem, without excluding
it. Brouwer bypasses this crucial point through an argument, which turns out to be of
an absolute infinity character. He cannot start from a finite number of nodes of K0 and
go up to the root, since it is possible to need the securability of a K0-node of higher
level and so on. E.g., securability of a node u1 may need the fact that v1 ∈ K0, while
securability of a node u2, may need the fact that v2 ∈ K0 and the securability of node
u3 etc.
Hence, Brouwer needs, in principle, all K0-nodes to go up to the root, which is a use of
absolute infinity. So, the supposable proof R<> is not, in general, a man-made proof,
since it is not applied to, at the beginning possible, bar K0. Brouwer acts as if he knows
that K0 is impossible, without proving though its impossibility.
Hence, in our view, proof R<> starts and finishes the way Brouwer says, if it is possible
to consider all η-inferences together. That means:

(i) either there is a uniform way of description of all η-inferences i.e., of B0,
(ii) or there is a tacit use of absolute infinity, considering that going further and further

93Kleene also agrees with this footnote.
94We have replaced Brouwer’s original notation with the one we used in Paragraph 11.
95I.e., for each node which is not M -accepted.
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from the root finally stops and reaching the root follows, in any case96.

(i) would mean though, that there is an extra condition in BBT1, something which is
never mentioned.
(ii) would mean a serious deviation from the intuitionistic point of view.
Even if M is a fan and B = Bϕ is an infinite species, then, at the beginning of R<>,
we do not know that B0 is a finite species. R<> starts with inferences

u is secured

u is securable

but we need to know that these inferences are finite, or some other uniform generation
of B0 is needed, in order to start R<>. Hence, the real problem with Brouwer’s proof of
BFT is that he considers a line of progression in R<>, without justifying constructively
that such a proof is completed in finite time.
Brouwer proves the finiteness of B0 only on the hypothesis that R<> is completed and
proceeds the way he describes. But before starting the proof, Brouwer doesn’t know
that B0 is finite and he does not explain how we may go from the η-inferences down
to the root <>. So, the proof R<> that Brouwer adjusts to hypothesis P

′
is not an

intuitionistic mathematical object.

Even if ζ-inferences are eliminated (see Proposition 14.1), still there is no guarantee
that we can reach the securability of <> using only η and z-inferences, starting from
the elements of B0, since the nodes of B0 needed for the securability of a certain node
may have unbounded length.
Although we elaborated the above argument independently from Epple, it can be found
in a condensed form in [Epple 1997] p.166, without Epple reaching though, the same
conclusions on the unacceptability of bar induction. Epple writes:

[The striking feature of bar induction is that, in contrast to ordinary com-
plete induction along the sequence of natural numbers, its anchoring is not
completely transparent. How can we be sure that the hierarchy of induction
steps ever reaches the root of a given fan? In fact, how can we be sure that
even a single induction step is warranted? Does this not presuppose that we
already know that all necessary anchoring statements of type (η-inferences)
are within finite reach?]

A serious consequence of our analysis of Brouwer’s proof of BFT is that the non-
constructive character of Brouwer’s argument applies to DBI too. While in standard
induction there is a fixed beginning, in DBI there is a fixed end without any explication
of how the η and z-inferences it employs lead to the w.o.p. of <>. This is related to
the result of Martino and Giaretta, that BD is equivalent to DBI, assuming CP, or
directly equivalent to MBI.
Our analysis of Brouwer’s inductive argument, or DBI, reveals a tacit use of absolute
infinity or a tacit use of an extra condition of uniform knowledge of B0. Through
MGT this pathology is transferred to BD too. Therefore, a whole new foundation of
intuitionistic analysis is needed, independently from DBI or MBI. This has extreme

96In [Brouwer 1981] p.101, van Dalen refers to the induction Brouwer employs to his proof as “trans-
finite induction”. Although, we are not sure what exactly van Dalen means, it seems a characterization
of Brouwer’s induction close to ours.
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consequences. BFT has to be proved in a different way. Of course, first we have to
explain why BFT should be proved i.e., why it must reflect an intuitionistic truth. Even
if that is accomplished, DBI, or MBI, as an intuitionistic tool, doesn’t seem right to
use. This has serious consequences in the proof of intuitionistic theorems considered
to be proved through DBI (e.g., intuitionistic Ramsey theorem is proved in [Veldman,
Bezem 1993] through DBI). As a results of our analysis though, intuitionistic truths,
DBI or MBI excluded, need to be completed in a new way.
Epple, in [Epple 1997] concludes:

[Even today, it appears to be an open question whether a non-circular jus-
tification of the form of transfinite induction proposed by Brouwer can be
found that satisfies the standards of strict verificationism. ... In the end ...
it was not so much Brouwer’s mathematics that was problematic, but rather,
despite all its potential philosophical merits, the epistemology that formed
a crucial part of his project and that guaranteed, according to Brouwer, the
undeniable superiority of his theory over the rest of modern mathematics.]

In our view, preserving, or even strengthening Brouwer’s epistemology may provide a
way out to the dead end formed by his mathematics (bar induction) and its incompat-
ibility to his epistemological standards.
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Appendix

A classical presentation of Baire space N and Cantor space C. From the point
of view of descriptive set theory the space of real numbers has three faces: the set of real
numbers R, Baire space N and Cantor space C. Levy accurately names these spaces
the real spaces (in [Levy 1979]).
R, N and C are not homeomorphic to each other and behave, generally differently.
E.g., while R2 is not homeomorphic to R, the cartesian products of Baire and Cantor
space are homeomorphic to themselves i.e., N and C are “dimensionless”. Also, R is
connected, while Baire and Cantor spaces are totally disconnected.
On the other hand, their differences are in some sense negligible, while the structure of
N and C is simpler than that of R. E.g., Baire space is homeomorphic to the irrationals,
and also it is homeomorphic to the finally non-constant sequences of C. Cantor space
is homeomorphic to Cantor set and it is standardly surjected to [0, 1].
Many of their common properties are shared by the completely metrizable metric spaces
(Polish spaces). At the end, one can study the space of reals that fits to his ends.
The study of Baire and Cantor spaces gives us the opportunity to compare concepts and
results between classical and intuitionistic analysis. Baire space appears in Brouwer’s
analysis, not in the usual set-theoretical context, but constructively interpreted through
the concept of universal spread. Hence, the same space, but differently interpreted, is
the ambient space of the intuitionistic continuum. Although the mathematical scene
looks the same, the foundational differences between classical and intuitionistic analysis
are responsible for the differences between the classical and the intuitionistic Baire
space.
In this Appendix we present the basic properties of classical Baire and Cantor space
working in the usual set-theoretical context97.

Baire space N is the set of sequences of natural numbers and it can be seen as the
body of the infinitely branching pruned Baire tree on N (see Paragraph 2). On the
cartesian product of N with itself the following metric is defined: if α, β ∈ N , then

ρ(α, β) =

{ 1
η(α,β)

, if α 6= β

0 , if α = β

where η(α, β) is the least natural number k (0 is not included in N), for which αk 6= βk,
if α 6= β. I.e., η(α, β) is the minimum index for which α, β differ98.

Proposition A.1: ρ is a metric on N .

Proof: By the definition of ρ
0 ≤ ρ(α, β) ≤ 1.

and ρ(α, β) = ρ(β, α). We see that ρ expresses the following intuitively expected fact:
the bigger η(α, β) gets, i.e., the bigger the common initial segment of sequences α and β
gets, the smaller is their distance. To the limit, when α = β, then formally η(α, β) =∞
and ρ(α, β) = 1

∞ = 0.

97For all the concepts and results that we refer to without proof see any standard book on topology,
e.g., [Dugundji 1989].

98Intuitionistically speaking, we cannot even state the above definition, since the least number
principle does not hold on subspecies of the species of natural numbers.
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For the proof of the triangle inequality

ρ(α, β) ≤ ρ(α, γ) + ρ(γ, β)

we consider the following cases:
(A) If α = β, then ρ(α, β) = 0 and ρ(α, γ) + ρ(γ, β) ≥ 0, therefore the inequality
trivially holds.
B1) If α 6= β and η(α, γ) < η(α, β), then 1

η(α,β)
> 1

η(α,γ)
and so 1

η(α,β)
< 1

η(α,γ)
+ 1

η(β,γ)
=

2
η(α,γ)

, since η(α, γ) = η(β, γ) and γ differs from α and β on the same index.

B2) If α 6= β and η(α, γ) > η(α, β)

γ1 = α1 = β1

. . .

. . .

. . .
γk−1 = αk−1 = βk−1

γk = αk 6= βk
. . .
. . .
. . .
γl−1 = αl−1

γl 6= αl

But then, η(γ, β) = η(α, β), hence 1
η(α,β)

= 1
η(γ,β)

, so again we take, 1
η(α,β)

< 1
η(α,γ)

+ 1
η(γ,β)

.

B3) If α 6= β and η(α, γ) = η(α, β), then 1
η(α,β)

= 1
η(α,γ)

and so,

1

η(α, β)
<

1

η(α, γ)
+

1

η(γ, β)

Actually, we saw that if γ 6= α and γ 6= β, then the triangle inequality holds strictly.
Equality holds iff γ = α or γ = β.�
Since N is not a vector space, ρ is not a norm generated metric.
It is easy to see checking each one of the cases of the above proof that

η(α, β) ≥ min(η(α, γ), η(γ, β))

therefore, ρ satisfies the stronger to triangular inequality, hypermetric triangular in-
equality

ρ(α, β) ≤ max(ρ(α, γ), ρ(γ, β))

which holds in p-adic metrics, where p is prime, and they are defined on the rationals Q.
The larger is the power of p which divides the difference of two rationals, the “closer”
they get with respect to a p-metric. These p-metrics are generated by the corresponding
p-norms, for which

|x+ y| ≤ max(|x|, |y|)
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holds. A norm satisfying the above inequality is called non-Archimedean and the cor-
responding metric, non-Archimedean metric 99. Furthermore, each non-trivial norm on
rationals is equivalent to a p-norm or to the usual Archimedean norm on them (Os-
trowski’s theorem).
But p-norms and p-metrics behave quite differently from the usual norms and metrics.
E.g., it is easy to see that a triangle in a field F with a non-Archimedean norm is always
an isosceles one and any point of the open disc B(α, ε) = {x ∈ F, |x− α| < ε} can be
considered a center of it (see [Koblitz 1977] p.6).

In Baire space:

B(α,
1

k
) = {β ∈ N , ρ(α, β) <

1

k
} = {β ∈ N , η(α, β) > k} ∪ {α}

i.e., the open disc with center α and of radius 1/k, is the set of all sequences β which
share the same k-initial segment with α (k-equal). Obviously,

B(α,
1

k
) = B(β,

1

k
)

for each β ∈ (α, 1
k
). Hence, in the open disc with center α and of radius 1/k each

element of the disc can be considered a center of it. The non-Archimedean metric of
Baire space is the origin of this property of N . Although ρ is the standard metric on
N , Baire space can be embedded homeomorphically to R having a topological behavior
based on the Archimedean metric of R.

Proposition A.2: If (αn)n is a sequence of elements of N , the following are equivalent:

(i) αn
ρ−→ α

(ii) ∀k ∃n, n = n(k) ∀n, n ≥ n(k), αkn = αk

Proof: (ii) ⇒ (i) (ii) expresses the fact that after some index n, which depends on k,
all sequences have the same k-term with α. That is,

for k = 1 ∃n(1) n ≥ n(1) α1
n = α1

for k = 2 ∃n(2) n ≥ n(2) α2
n = α2

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .
for k ∃n(k) n ≥ n(k) αkn = αk

So, for n > max{n(1), n(2), ..., n(k)} all terms αn have the same initial k-segment with

α, therefore, since k is any natural, αn
ρ−→ α.

(i) ⇒ (ii) Hypothesis αn
ρ−→ α by definition means that

(1) ∀k ∃n(k) : ∀n, n ≥ n(k), ρ(αn, α) <
1

k
.

99We can mimic, somehow, the construction of the algebraically closed and Cauchy-complete (with
respect to the usual metric) field of complex numbers C from the Archimedean field R and to construct
set-theoretically the least field containing the rationals which is algebraically closed and Cauchy-
complete with respect to p-norm. This gigantic field is not, in contrast to C, a locally compact space
and it is the ambient space of p-adic analysis (for this construction see, for example, [Koblitz 1977]
chapters 1 and 3.)
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But, if αn 6= α, ρ(αn, α) < 1
k

means that η(αn, α) > k and αn = α, by the definition of
η.�
Proposition A.3: N is a complete metric space.

Proof: Let (αn)n be Cauchy sequence of elements of N , i.e.,

(2) ∀k ∃n(k) : ∀n,m, n,m ≥ n(k), ρ(αn, αm) <
1

k

and if αn 6= αm,

(3) ρ(αn, αm) <
1

k
⇔ η(αn, αm) > k ⇒ αkn = αkm

that is, all sequences αn, with n ≥ n(k) share α1
n, α

2
n, ..., α

k
n as a k-initial segment. In

that way, for each k, the initial k-segment α1
n, α

2
n, ..., α

k
n of the sequence-limit of (αn)n

is defined. So, if we define
α(k) = αkn,

then, by Proposition A.2, we get that αn
ρ−→ α.�

As a complete metric space N satisfies Baire category theorem i.e., the intersection of
a sequence of dense and open subsets of N is dense in N . Also, N is a metric space
of second category, i.e., N is not equal to the union of a sequence of nowhere dense
subsets of it.
N ’s metric is directly connected to the product metric.
If we define on N the discrete metric

δ(n,m) =

{
1 , if n 6= m
0 , if n = m

and since δ(n,m) ≤ 1, the product metric is defined on N

σ(α, β) =
∞∑
n=1

δ(αn, βn)

2n
,

since N = NN. It is easy to see that convergence in product metric is equivalent to
pointwise convergence i.e.,

(4) αn
σ−→ α⇔ (∀k) αkn

δ−→ αk

Metrics ρ and σ on N are equivalent i.e., they generate the same family of open sets,
or equivalently

(5) αn
σ−→ α⇔ αn

ρ−→ α.

(5) is proved by (4), since if 0 < ε < 1,

αkn
δ−→ αk ⇔ ∃n0 n ≥ n0 δ(αkn, α

k) < ε⇔ δ(αkn, α
k) = 0⇔ αkn = αk

and Proposition A.2.�
The use of metric σ on N has a conceptual advantage over the use of metric ρ. A
classical sequence is a mathematical object that exists as a whole independently from
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our knowledge of it. In the definition of ρ the distance between two sequences α, β is
determined by an initial segment, the length of the maximum common initial segment
of α, β. The rest of the sequences α, β plays no role in the measure of their between
distance. As we have seen, this attitude is better suited to intuitionistic sequences of
which, generally, we know only an initial segment. The classical conception of sequence
is better reflected in the definition of metric σ. Another expression of σ is

σ(α, β) =

{ ∑
α(n)6=β(n) 2−n , if α 6= β

0 , if α = β.

σ takes into account the whole of sequences α, β, which is known, within mathematical
realism. Also, σ can be seen as the limit of a metric on the finite nodes of the tree N ,
in a more natural way than ρ. I.e.,

σ(α, β) = limnσ
∗(nα, nβ)

where

σ∗(nα, nβ) =
n∑

α(k)6=β(k)

2−k

and nα, nβ are the n-initial segments of α, β respectively. On the other hand, metric ρ
is easier to handle in the proofs of the topological properties of N .

A (classical) spread is a closed subset of N .

Proposition A.4 (Characterization of closed subsets of N : The following are
equivalent:
(i) M is a classical spread.

(ii) If αn a sequence of elements of M such that αn
ρ−→ α, then α ∈M

(iii) M satisfies

(6) (∀α)(α ∈ N )(∀k)(∃β)(β ∈M)(i < k → α(i) = β(i))⇒ α ∈M.

Property (iii) expresses the fact that M contains all sequences α for which the (k− 1)-
initial segment is the (k − 1)-initial segment of an element of M .
(iv) M is the body of a tree on N.

Proof: We do not show here the standard proof of the equivalence between (i) and (ii).

(iii) ⇒ (ii) If αn
ρ−→ α, then, by Proposition A.2,

(7) ∀k ∃n(k) : ∀n, n ≥ n(k), αkn = αk

If n = max{n(1), n(2), ..., n(k − 1)}, αn is an element of M and it has the same (k−1)-
initial segment with α. Then, by (iii), α ∈M .
(ii) ⇒ (iii) For each k there exists, by the hypothesis of (6), an element of M , denoted
by β(k), which is (k − 1)-same to α (we use here the Principle of Countable Choice).

The sequence (βk)k of elements of trivially satisfies (7), therefore, (βk)k
ρ−→ α, and so,

α ∈M .
(iii)⇒ (iv) By Proposition 1.2.1(ii), we know thatM ⊆ [M∗], whereM∗ = {nα|n ∈ N α ∈M}.
To show the inverse, if α is in [M∗], then nα ∈M∗ for each n, so, by (iii), α ∈M .
(iv) ⇒ (iii) By Proposition 1.2.1(iii), M = [M∗]. If α is a sequence satisfying the hy-
pothesis of (iii), then nα ∈M∗, for each n. Therefore, α is in [M∗] i.e., α is in M .�
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Since completeness is inherited to the closed subsets of a complete metric space, a (clas-
sical) spread is also complete.
With respect to an open ball of N , B(α, 1

k
), which is defined by

B(α,
1

k
) = {β ∈ N , ρ(α, β) <

1

k
} = {β ∈ N , η(α, β) > k} ∪ {α}

containing all the k-same to α sequences, and we denote for simplicity by Bk(α), we
have the following proposition.

Proposition A.5: (i) Bk(α) is a closed set, therefore it is a clopen set.
(ii) Bk(α) is not a compact subset of N .
(iii) N has no non-empty, clopen, compact subset.
(iv) N is not locally compact, therefore it is not homeomorphic to R.
(v) The family Bk(α) is a base for the topology of N , and hence, N is zero-dimensional
space. As such, a space N is totally disconnected.
(vi) N is separable and consequently second countable space. Moreover, it has a denu-
merable base of clopen sets.

Proof: (i) Let γ a sequence each n-initial segment of which is the n-initial segment
of a sequence β in Bk(α). So, its k-segment is the k-segment of an element of Bk(α),
therefore, γ is k-same to α. So, γ ∈ Bk(α) and Bk(α) is a closed set by Proposition
A.4.
(ii) Let β ∈ Bk(α) and Bk+1(β) all (k + 1)-same to β sequences of N , which are ob-
viously k-same to α, therefore, they belong to Bk(α). These sets ia cover of Bk(α)
i.e., ⋃

β∈Bk(α)

Bk+1(β) = Bk(α)

If Bk(α) was compact, then this cover would have a finite subcover. I.e., each k-same
to α sequence would be (k + 1)-same to a finite number of sequences extending the
k-initial segment of α, which is absurd, since the k-initial segment of α has an infinite
number of immediate successors in N .
(iii) Let K be a non-empty, clopen and compact subset of N . Since K is open, for each
α ∈ K there exists Bk(α) ⊂ K. Then Bk(α) itself is compact, as a closed subset of a
compact metric space, which is absurd by (ii).
(iv) If N was locally compact, then each element of N would belong to some compact,
open neighborhood of it, which is absurd by (iii). So, while spaces kN, with k ∈ N, i.e.,
the set of sequences with values in k = {0, 1, 2, ..., k − 1}, are all compact, N is not
even locally compact.
If N and R were homeomorphic, then their between homeomorphism θ : R→ N would
be a continuous, open and onto the Hausdorff space (as a metric space) N function.
Then, N would also be locally compact100, which is absurd.
(v) The fact that the family of Bk(α) is a base for the topology of N is self-evident.
Therefore, N is a 0-dimensional space, as a metric space (hence T1-space) with a base
of clopen sets. As a 0-dimensional space, N is also totally disconnected i.e., each

100Generally, the continuous image of a locally compact space is not locally compact, though if
θ : X → Y is a continuous, open and onto Y function, where X is locally compact and Y is Hausdorff,
then Y is locally compact (se e.g., [Negrepontis et.al. 1988] p.399).
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connected component is a singleton101.

0-dimensional (X) ⇒ totally disconnected (X): If c 6= x and c ∈ C, where C is a
connected component of X such that C ⊃ {x}, then X−{x} is open in X. So, there is
a clopen subset K of X such that c ∈ K and K ⊃ X − {x}. Clearly K ∩C is a clopen
subset of C, which is neither ∅, since c ∈ K ∩ C, nor C, since x /∈ K ∩ C. So, there is
a clopen set in the connected space C other than ∅ or C, which is absurd.

The definitional property of a 0-dimensional space is the starting point of the definition
of topological dimension102.
(vi) Let Dk be the set of sequences with zero tail after their k-initial segment. I.e.,

Dk = {α | α ∈ N ,∀i i > k, α(i) = 0}

The set
D =

⋃
k∈N

Dk

of all sequences of N with zero tail (i.e., of all finally constant zero sequences) is
denumerable and dense in N . Denumerability is established by the equipollence of D
with the set of finite sequences of N, which is denumerable as a countable union of
denumerable sets. Density is due to the fact that there is an element of D in any basic
set Bk(α) (just add to the k-initial segment of α the constant sequence 0).
Hence, N is separable and as a separable metric space N is second countable. The
family of Bk(d), with d ∈ D and k ∈ N, is a countable base of clopen sets for the
topology of N .�
101The inverse is not true (see e.g., Arens rectangle in [Steen, Seebach 1978]) but in a compact space

the two concepts are equivalent (a proof can be found e.g., in [Walker 1974] p.46). Walker also shows
the connection between these very non-connected spaces with the Boolean algebra of their clopen
subsets. In a connected space, like R, the only clopen subsets are the empty set and space itself on
which the trivial Boolean algebra {0, 1} corresponds to. In totally disconnected or 0-dimensional spaces
there exist many clopen subsets. If X is totally disconnected and not connected space, then it can be
written as X = A ∪B, where A,B are clopen in X. And if one of A,B has at least two elements, then
it can also be written as the union of two clopen subsets in X and so on. The following Stone’s results
are fundamental:
(a) A distributive lattice can be represented as the family of clopen subsets of a totally disconnected
space.
(b) The Boolean algebra of clopen subsets of a 0-dimensional space X is complete iff X is extremely
disconnected (i.e., X is 0-dimensional space and the closure of an open set of X is also an open set).
(c) (Representation theorem of Boolean algebras) A Boolean algebra is isomorphic to the Boolean
algebra of clopen subsets of a compact totally disconnected space.
102The following inductive definition justifies the term 0-dimensional space103:

(a) dim∅ = −1
(b) The topological dimension a non-empty topological space is given by

dimX = sup{dimpX, p ∈ X}

(c) If X is a non-empty topological space, then the dimension dimpX of X on p ∈ X is given by:

dimpX = 1 + sup { n | p has base with boundary dimension ≤ n }

A totally disconnected space X has topological dimension 0. A point p ∈ X has neighborhood base
with clopen sets. Each clopen set has boundary the empty set, which is of dimension −1. So, by (b),
dimX = 0.
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Proposition A.6 (Characterization of compact subsets of N ): The following
are equivalent:
(i) K is a compact subset of N .
(ii) K is the body of a (pruned) fan F on N.
(iii) K is a classical spread and for all α in K, there is β in N such that α(n) < β(n),
for all n.

Proof:(i)⇒ (ii) Since K is closed, it is the body of a tree T . Let u ∈ T . We show that
u has a finite number of immediate successor nodes.
The family of all B(u a k), where B(u) is the basic clopen set of all sequences α such
that u ≺ α, and u a k ∈ T , together with all sets B(w), where l(w) ≤ l(u) and w ∈ T ,
is an open cover of K. Since K is compact, this cover has a finite subcover, therefore,
u has a finite number of immediate successor nodes.
(ii) ⇒ (i) A topological space X is called Lindelöf iff each open cover of X has a
countable subcover. It is easy to see that each second countable space is Lindelöf and
that a closed subspace of a Lindelöf space is also Lindelöf. Since N is second countable
(Proposition A.5(vi)), N is Lindelöf, and since K is a compact subset of N , K is
Lindelöf too.
Therefore, it is only necessary to show that each countable cover of K has a finite
subcover.
Let K =

⋃
i∈I U

∗
i , where |I| = ℵ0, a countable cover of K. Without loss of generality

take I = N. U∗i is open in K iff U∗i = Ui ∩K for some Ui open in N . Likewise, a basic
clopen set B∗(u) in K, where B∗(u) = {α|α ∈ K : u ≺ α}, is identical to B(u) ∩ K.
Let E be an open set in K.

α ∈ E ⇔ (∃u)(u ≺ α) : B∗(u) ⊆ E
α /∈ E ⇔ (∀u)(u ≺ α) B∗(u) * E

⇔ (∀u)(u ≺ α) (∃β)(u ≺ β) : β /∈ E
We define the following sequence of open sets of K:

E1 = U∗1 .
E2 = U∗1 ∪ U∗2 .
....................
Ei =

⋃i
j=1 U

∗
j .

Obviously, i < k ⇒ Ei ⊆ Ek and K =
⋃
i∈I Ei.

We prove the existence of a finite subcover by reductio ad absurdum.
If there is no finite subcover of K =

⋃
i∈I U

∗
i , or equivalently of K =

⋃
i∈I Ei, and since

K = [F ], we define the following subsets of F :

V1 = {u|u ∈ F : l(u) = 1 ∧ B∗(u) * E1},
V2 = {u|u ∈ F : l(u) = 2 ∧ B∗(u) * E2},
.............................................................
Vi = {u|u ∈ F : l(u) = i ∧ B∗(u) * Ei}, and

V =
⋃
i∈I

Vi.

Each Vi is non-empty, otherwise each Ei would be a finite subcover. In order to show
that V is a subtree of F , we need to prove that if w ∈ V and u ≺ w, then u ∈ V .
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Suppose that u /∈ V .

u /∈ V ⇒ u /∈ Vi,∀i⇒ u /∈ Vl(u) ⇔ B∗(u) ⊆ El(u)

But then, B∗(w) ⊆ El(u), therefore, B∗(w) ⊆ El(w), since El(u) ⊆ El(w). But this
contradicts the fact that w ∈ V iff B∗(w) * El(w).
Since V is trivially infinite, applying König’s lemma on V , there is an infinite branch
α in K which also belongs to [V ]. We show that α /∈

⋃
i∈I Ei.

Suppose the inverse, then

α ∈
⋃
i∈I Ei ⇒ α ∈ Ei, for some i ⇒ (∃u ≺ α)B∗(u) ⊆ Ei.

Hence, for each w such that l(w) > i and u ≺ w ≺ α,

B∗(w) ⊆ B∗(u) ⊆ Ei ⊆ El(w),

which is absurd, since w ∈ V ⇒ w ∈ Vl(w), where B∗(w) * El(w).
So, using König’s lemma on V we found that the initial cover of K was not actually
a cover. Therefore, our basic assumption, that there is no finite subcover of the initial
cover which generated the construction of V , is false, and we conclude that K is com-
pact.
(ii)⇒ (iii) Since K = [F ] and F is a fan, there is for each n a finite number of F -nodes
of length n. Let u1, u2, ..., uk(n) be these nodes and m1,m2, ...,mk(n) their n-terms. We
define β(n) to be a natural number greater than all m1,m2, ...,mk(n).
(iii) ⇒ (ii) Since K = [T ], we need to show that T is a fan. If not, then a node u of T
would have infinite immediate successor nodes, the (l(u) + 1)-terms of which form an
unbounded subset of N, a fact which contradicts the hypothesis of (iii).�
Corollary: N is not a Kσ space i.e., N is not the countable union of compact sets104.

Proof: The finite countable case is a simple generalization of the argument in the above
(ii) ⇒ (iii) proof. The infinite countable case though, requires a simple diagonal argu-
ment, as it is customary in the transition from the finite case to the infinite countable
case.
If N =

⋃∞
i=1Ki, we construct an element α of N which cannot be found in any Ki.

Since K1 is compact subset of N , there is an element α1 of N , not in K1, such that
β(n) < α1(n) for each n. In the same way to Ki corresponds a sequence αi. Hence, the
sequence

(α1(1), α2(2), ..., αi(i), ...)

belongs to N but not in
⋃∞
i=1Ki.�

A point p ∈ X is a limit point of a subset A of a topological space X iff each open
set in X which contains p also contains an element of A, other than p. An element q
of A which is not a limit point of A is called an isolated point of A, and then {q} is
the intersection of A with an open set in X. A subset P of X is called perfect iff P is
non-empty, closed and it has not isolated points, i.e., each point of P is a limit point
of P .

Proposition A.7 (Characterization of perfect subsets of N ): If P ⊆ N , the
following are equivalent:

104Unlike R, which is the union of all [−n, n].
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(i) P is perfect.
(ii) P is the body of a splitting tree Π on N.

Proof: (⇒) Since P is closed, P = [Π], for some tree Π. If Π is not a splitting tree,
∃u ∈ Π such that:

[(∀w1, w2)(u ≺ w1, w2)]⇒ w1 � w2 ∨ w1 � w2.

But then, B(u) ∩ [Π] = {p}, therefore p is isolated, which is absurd.
(⇐) If P = [Π] for some splitting tree Π, then P is automatically closed. If p is in
B(u) ∩ [Π], then there is always an element q 6= p of P also in B(u), since u always
splits into incompatible nodes, therefore to different infinite extensions of it.�
Cantor space C is the body of the Cantor tree 2<N, i.e., C = 2N. Since a Cantor tree
is a fan, by Proposition A.6, C is compact in N . As the proof of Proposition A.6 does
not involve the axiom of choice (AC), this proof of the compactness of C is AC free105.
The cardinality of N is c, the cardinality of the continuum, because | N | = ℵℵ0

0 and
since C ⊂ N , with | C | = 2ℵ0 , then,

2ℵ0 ≤ ℵℵ0
0 ≤ cℵ0 .

But, 2ℵ0 = cℵ0 = c, therefore, ℵℵ0
0 = c. We reach the same conclusion by showing the

equipollence between N and the set of irrational numbers.

We prove now a topological characterization of C, which was given by Brouwer in
[Brouwer 1910], and the construction of the tree involved is repeated, mutatis mutan-
dis, in the topological characterization of N 106.

Since Cantor space is the body of a splitting fan, it is a compact subspace of N , with
no isolated points. As a subspace of N it is a T1-space, with a countable base of clopen
subsets. These properties of C suffice to characterize Cantor space.

Proposition A.8 (Topological characterization of Cantor space (Brouwer
1910)): A topological space X which is:
(i) T1,
(ii) compact,
(iii) with a countable base of clopen sets and
(iv) without isolated points,
it is homeomorphic to Cantor space C.
Proof: Let (Bn) a fixed enumeration of the base of clopen sets. If u is a finite sequence
of 0, 1 we define inductively on the length of u a closed (therefore compact) and open
subset of X.
K<> = X, and if Ku is defined we define Kua0 and Kua1 as follows:
Since X has no isolated points, clopen set Ku is not a singleton. Let x, y ∈ Ku. Since
X is T1, there exists open set V such that, x ∈ V and y /∈ V . Hence, there exists Bn,
for some n, such that x ∈ Bn and Bn ⊆ V . So, Bn ∩Ku is a proper, non-empty subset
of Ku, since x ∈ Bn and y /∈ Bn. Let n be the least natural number for which Bn ∩Ku

is a proper, non-empty subset of Ku. Therefore, the inductive definition in question is

105The AC is used in the proof of Tychonov’s theorem, which proves directly the compactness of C.
106In the Appendix of this chapter we summon the topological characterizations of all related spaces.

We followed [Truss 1999] in the proofs of the following two propositions.
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the following:

(i) K<> = X,
(ii) Kua0 = Bn ∩Ku and Kua1 = Ku −Bn

where Bn is defined from Ku as above.
It is clear that,
(iii) Kua0 ∩Kua1 = ∅ and
(iv) Kua0 ∪Kua1 = Ku.
I.e., Kua0 and Kua1 form a partition of Ku. In that way a tree similar to C is con-
structed (K(0) is B1, if B1 is not the empty set).
It is obvious that each Ku is formed by the clopen sets Bn, so that it is clopen itself.
If α ∈ C to each initial segment nα of α it corresponds the compact set Knα , applying
the above construction. Because of (iv) it holds that

(v) K1α ⊃ K2α ⊃ ... ⊃ Knα ,

and since Knα is by definition non-empty, the family of clopen sets (Knα)n∈N has the
finite intersection property, therefore by the compactness of X,⋂

n∈N

Knα 6= ∅.

Moreover, the above intersection is a singleton i.e.,⋂
n∈N

Knα = {y}

for some y ∈ X. If the intersection contained two elements y 6= z, then, by the T1-
condition on X and the existence of the base of all Bn, there is some Bk with y ∈ Bk

and z /∈ Bk. For each n, K(n+1)α is, by the inductive definition, equal to Knα ∩ Bw or
to Knα − Bw, where w = w(n), and since w(n) are all unequal to each other, then for
some n it holds that w(n) > k. Hence, since w(n) for that n is the minimum index
so that Knα ∩ Bw is a proper, non-empty subset of Knα , for that index k < w it holds
that Knα ∩Bk 6= ∅, since both sets contain y, so, necessarily, (Knα ∩Bk) = Knα i.e.,
Bk ⊇ Knα . But, if z belongs to the infinite intersection, then it belongs also to Knα

i.e., to Bk, which is absurd, by the definition of Bk.

From the above the following map θ : C → X is well-defined, where

θ(α) = y ↔
⋂
n∈ω

Knα = {y}.

We prove that θ is a homeomorphism.

θ is 1 − 1 map: If α 6= β elements of C, then α, β differ in some initial segment, and
suppose that this happens for the fist time in the (n+1)-level. If θ(α) = y and θ(β) = z,
then y ∈ Knαa0 and z ∈ Knαa1, which are disjoint, therefore y 6= z.

θ is onto X: If y ∈ X, then using the Principle of the Excluded Middle (PEM), we find
α ∈ C, such that θ(α) = y, as follows:
In each step of the tree of Ku, y belongs to one of the two sets i.e., y ∈ K(0) or y ∈ K(1)

and if, for example, y ∈ K(0), then y ∈ K(0,0) or y ∈ K(0,1) etc. By that way it is evident
how the element of C which corresponds to y through θ is constructed.
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θ corresponds a basic clopen set of C to a clopen set of X:

θ(Bk(α)) = Kkα .

θ(Bk(α)) ⊆ Kkα , since θ(α) = y ↔
⋂
n∈NKnα = {y}, so y ∈ Kkα .

Also, θ(Bk(α)) ⊇ Kkα , since, if y ∈ Kkα , then y ∈ Kkαa0
or y ∈ Kkαa1

, so, by that way
(as in the onto case) an element of Bk(α) is formed, which corresponds through θ to y.

A basic clopen set w of X has as a θ-inverse image a clopen set of C:
θ−1(Bw) is a closed set of C:
Let αn a sequence in C such that αn → α (i.e., all terms of it with index larger than
some index n0 have the same m-initial segment with α) and if for each n, θ(αn) ∈ Bw,
where if θ(αn) = yn ↔

⋂
k∈NKkαn = {yn}, then yn ∈ Bw. We show that θ(α) = y ↔⋂

m∈NKmα = {y} belongs to Bw too. Since mα is the m-initial segment of all αn, for
n ≥ n(m), then

(Kmα ∩Bw) 6= ∅,

since yn ∈ Kmα ∩Bw, for n ≥ n(m). Since Bw is a closed subset of a compact space, it
is compact itself, and the family of closed sets (Kmα ∩Bw)m has the finite intersection
property (a finite intersection of elements of this family is equal to the non-empty
intersection of the smallest set of the finite subfamily - the one, due to (v), with the
largest index - with Bw). Hence, by the compactness of Bw, the whole family has non-
empty intersection, which is equal to {y} ∩Bw, which shows that y ∈ Bw.
θ−1(Bw) is an open set: It suffices to show that the complement of θ−1(Bw) in C is
closed. If αn is a sequence in C such that αn → α and θ(αn) /∈ Bw for each n, it can be
proved, as above, that θ(α) /∈ Bw.�.

The hypothesis that X has no isolated points was crucial to the definition of Ku, so
that with the compactness of X,

⋂
n∈NKnα 6= ∅. Without these two hypotheses we have

the following generalization.

Proposition A.9: If X is a T1 topological space with a countable base of clopen sets,
then X is homeomorphic to a subspace of C.
Proof: If (Bn)n a base of clopen sets of X, then we define the following tree of clopen
sets Cu:

C<> = X Cua0 = Cu ∩Bn Cua1 = Cu −Bn.

If α ∈ C, then, as in the above proof,
⋂
n∈NCnα has at most one element. Let Γ the

set of all α in C for which the above intersection is non-empty. We define again a map
θ : Γ → X by θ(α) = y ↔

⋂
n∈NCnα = {y}. The fact that θ is a homeomorphism is

proved as in the previous proof.�
Corollary: If n ∈ N, then nN is homeomorphic to C.
Clearly, nN satisfies all hypotheses of the characterization of C.
Brouwer’s characterization of C is extended to Cantor cubes of larger weight i.e., to
spaces 2λ, where λ is an uncountable cardinal.

As we have already shown, N has a base of clopen sets, the only clopen and compact
subset of N is the empty set, and it is also complete. These properties suffice to
characterize N .

Proposition A.10 (Topological characterization of Baire space (Alexandroff,
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Urysohn 1928)): A topological space X which is:
(i) completely metrizable,
(ii) with a countable base of clopen subsets,
(iii) without non-empty, clopen and compact subset,
it is homeomorphic to Baire space N .

Proof: Let (X, d) the complete metric space of our hypothesis and (Bn)n a fixed
enumeration of a countable base of clopen sets. If someone tries to mimic Brouwer’s
construction needs something like the following lemma.

Lemma 1: If (X, d) a metric space satisfying the above hypotheses and (Bn)n its fixed
base of clopen sets, then each non-empty, clopen subset of X is written as

H =
⋃
n∈S

Hn,

where
(a) S is countable,
(b) Each Hn is non-empty, clopen,
(c) Hn ∪Hm = ∅,
(d) diam(Hn) ≤ δ, where diam(Hn) is the diameter of Hn and δ is any positive number.

Proof of Lemma 1: For its proof we need the following lemma.

Lemma 2: If (Bn)n is a countable base of a metric space (X, d), then the family of Bn

with diameter ≤ δ is also a base for the topology of X.

Proof of Lemma 2: Let A be open and x ∈ A. We shall find an element of the above
family containing x and contained in A.
Let A

′
x = B(x, δ

2
) ∩ A = {y ∈ A : d(x, y) < δ

2
}, which is open, as the intersection of

open sets, and it has diameter ≤ δ (if y, z ∈ A′x, then d(y, z) ≤ d(y, x) + d(x, z) < δ).
Since x ∈ A′x, there is a basic set Bn containing x, contained in A

′
x, and, therefore, it

has also diameter ≤ δ.

Going back to the proof of Lemma 1, we see that the clopen set H cannot be, by
hypothesis, compact, and so each cover of H does not have necessarily a finite subcover.
So, if H ⊆

⋃
i∈I Ai, then Ai’s, as intersections of open sets in X with the open H, are

open in X too.
If we define the sets Si = {n ∈ N : Bn ⊆ Ai ∧ diam(Bn) ≤ δ}, then, by Lemma 1,
Ai =

⋃
n∈Si Bn and if we define S =

⋃
i∈I Si we find that

H =
⋃
n∈S

Bn.

Of course, this cover of H has no finite subcover, otherwise its initial cover would also
have one, which is absurd.
In the standard way, we “disjoint” the family of Bn with n ∈ S. I.e., we define for each
n ∈ S the set Hn = Bn −

⋃
k<n,k∈S Bk. Sets Hn are by their definition clopen sets of

X, mutually disjoint, with diameter ≤ δ, and they satisfy the following property:⋃
m≤n,m∈S

Hm =
⋃

m≤n,m∈S

Bm.
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Hence, since all Bn, n ∈ S cover H, all Hn, n ∈ S cover H too. Moreover, the set
{n ∈ S : Hn 6= ∞} is a countable infinite one, otherwise, by the above equality, there
would be a finite subcover from Bn, n ∈ S, of H.

Going back to the proof of the main theorem, we construct, as in the proof of the
characterization of C, a tree of clopen sets of X, which is going to be a “copy” of N .
We correspond inductively to each finite sequence u of naturals a clopen set of X as
follows:

(i) K<> = X,
(ii) Ku splits into Kuan, where n ∈ N and the family of Kuan is that partition of Ku

by clopen sets with diameter ≤ 1
l(u)

, the existence of which is established by Lemma 1.

In analogy to Brouwer’s tree, if α ∈ N , then

K1α ⊃ K2α ⊃ ... ⊃ Knα ,

and ⋂
n∈N

Knα 6= ∅

since, for each n, let xn ∈ Knα (principle of dependent choices), since Knα 6= ∅. Then,
if m ≤ n, then xm, xn ∈ Kmα , because Knα ⊂ Kmα . Hence, by the definition of Kmα ,
d(xm, xn) ≤ 1

m
. So, for an as small as possible positive 1

m
there is a natural (m itself)

such that, for n ≥ m, d(xm, xn) ≤ 1
m

. I.e., the sequence (xn)n is a Cauchy sequence.
Therefore, by completeness of X, there is x ∈ X such that xn → x.
But, x ∈

⋂
n∈NKnα since, if for some n, x /∈

⋂
n∈NKnα , then x has a strictly positive

distance from the clopen set Knα . By the convergence of (xn)n to x though, there are
terms of the sequence which belong to Knα and their distance from x is less than this
positive distance, something which is absurd.
Moreover, the above intersection is a singleton. I.e.,⋂

n∈N

Knα = {y}

for some y ∈ X. If there was another element in the intersection, it would have some
strictly positive distance from y and at the same time they would both belong to the
Knα sets of diameter less than this positive distance107.
Again we define a map θ : N → X by,

θ(α) = y ↔
⋂
n∈N

Knα = {y}.

θ is proved to be 1 − 1, onto X and a homeomorphism exactly like the C-case. I.e.,
again θ(Bk(α)) = Kkα and θ−1(Ku) is clopen in N .
Therefore, if we show that sets Ku, where u ∈ NN form a basis for the topology of X,
then θ sends all basic clopen sets of N to basic sets of X and the inverse image of basic
sets of X are clopen sets of N .

107We reach the same conclusion using the fact that a metric space X is complete iff for each de-
scending sequence (Fn)n of non-empty closed subsets of X, with lim diam(Fn) = 0, there exists an x
such that

⋂
n∈N Fn = {x}.
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Let A open in X and y ∈ A. There is then B(y, 1
n
) ⊆ A. Let α in N such that

θ(α) = y ↔
⋂
n∈NKnα = {y}. Then, Kn+1α ⊆ A, because, since y ∈ Kn+1α , if z ∈

Kn+1α , then d(z, y) ≤ 1
n+1

< 1
n
, hence z ∈ B(y, 1

n
).

Then, the homeomorphism between N and X has been established.�
As a corollary of the above proof we get, in analogy to Proposition A.9, the following
fact.

Proposition A.11: If X is a topological space with a countable base of clopen sets
and without a non-empty, clopen and compact subset, then X is embedded to N .

As we mentioned at the beginning of the Appendix, real spaces are only “slightly”
different. We have already stated all necessary tools to show the exact relations between
real spaces.
Cantor set Ca is generated by [0, 1] by pulling out its middle third interval (1

3
, 2

3
), and

then, by pulling out the middle third interval of the remaining two intervals, and so on.
The remaining set after the absolutely infinite completion of this procedure is Ca. It
is easy to see that a point of [0, 1] belongs to Ca iff its triadic expansion contains no 1.
I.e, an element c of Ca is of the form

c =
∞∑
i=1

ci
3i

, ci ∈ {0, 2}.

Proposition A.12: Cantor set Ca is homeomorphic to Cantor space C.
Proof: The form of an element c of Ca shows that Ca is closed in [0, 1], therefore it is
compact. Also, it has no isolated points and it has a countable base of clopen sets, since
it contains no non-trivial intervals (a non-empty subset of R has a base of clopen sets
iff it contains only trivial intervals). Therefore, by Proposition A.8, it is homeomorphic
to C108.�
Proposition A.13: A separable, zero-dimensional metric space X is embedded to R.

Proof: X has a countable base of clopen sets, therefore, by Proposition A.9, it is em-
bedded to C. Since C is homeomorphic to Ca, a subset of [0, 1], X is embedded to R.�
As in the case of C, there are topological characterizations of all spaces of the form Nλ,
where λ is an uncountable cardinal109.

Proposition A.14: The set of irrational numbers I is homeomorphic to N .

Proof: The intervals (closed or open) with rational ends cutting I form a countable
base of clopen sets in I.
Also I with the relative topology of R has no non-empty, compact and clopen subset. If
K was such a set, then it would be the intersection of an open in R set with I. Hence,
there would be a basic set B(x, ε) such that, B(x, ε) ∩ I ⊆ K. In the intersection there
are Cauchy sequences of rationals converging to rational points outside K, which is
absurd, since K is complete, as a compact metric space.
Finally, although I is not complete with the relative topology of R, it is completely
metrizable with a complete metric equivalent to its natural metric. We use here a the-

108The standard homeomorphism between C and Ca is a special case (X = C) of the homeomorphism
in the proof of Proposition A.8.
109See [Chigogidze 1996].
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orem of Mazurkiewisz, according to which, a subset of a complete metric space X is Gδ

iff it is completely metrizable with a complete metric equivalent to the initial relative
metric. But I is Gδ, as a complement of Q, which is Fσ

110.
Therefore, I satisfies the hypotheses of the characterization of N 111.�
We may establish the aforementioned homeomorphism independently from the charac-
terization of N . Here we shall only sketch this proof112.
N is identified with its subset A of sequences containing no 0:

(α0, α1, ..., αn, ...) 7→ (α0 + 1, α1 + 1, ..., αn + 1, ...).

Then, we define a map θ : A→ (1,+∞) as follows:

θ(α0, α1, ..., αn, ...) = α0 +
1

α1 + 1
α2+ 1

α3+...

.

Using basic properties of continued fractions113 it is proven that:

(i) θ(α0, α1, ..., αn, ...) converges.
(ii) θ is 1− 1.
(iii) θ(α0, α1, ..., αn, ...) is irrational.
(iv) Each irrational > 1 is in the range of θ.
(v) θ and θ−1 are continuous.

Finally, through a homeomorphism f : (1,+∞)→ R

f(x) =

{
x− 1 , if x ≥ 2
2− 1

x−1
, if 1 < x < 2

which preserves irrationality, we get, composing all previous homeomorphisms, a home-
omorphism between N and I.

A (classical) function f : X → Y , where (X, ρ1) and (Y, ρ2) are metric spaces, is
continuous iff the inverse image of an open set in Y through f is an open set in X.
Equivalently, if for each α ∈ X

(1) ∀ε > 0 ∃δ > 0 : ρ1(β, α) < δ ⇒ ρ2(f(β), f(α)) < ε.

Equivalent to (1) is the following:

(2) ∀λ ∈ N, ∃k ∈ N : ρ1(β, α) <
1

k
⇒ ρ2(f(β), f(α)) <

1

λ
.

If f : N → N, where N is a discrete metric space, (2) has the following form:

(3) ∃k ∈ N : β, α k-same ⇒ f(β) = f(α).

110Q is Fσ, since it is the countable union of the closed singletons of rationals.
111By this proof it is evident why completeness of metric spaces is not a topological invariant.
112A complete proof can be found in [Truss 1997] Chapter 10.
113A classical introduction to continued fractions is [Khinchin 1964], while an original interpretation

of Plato’s dialectics through the concept of anthyphairesis, a concept equivalent to that of a continued
fraction, can be found in Negrepontis work (see e.g., [Negrepontis 2005]).
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(3) expresses the fact that a map f : N → N is continuous if its value f(α) is determined
by some initial segment of α. Of course, not every map f : N → N is continuous. E.g.,

f(α) =

{
0 , if α = 0
1 , if α 6= 0

Obviously, there is no initial segment of 0 which determines the value f(0), since for
each N0, there is a sequence β 6= 0 such that Nβ = N0 and it has value 1 under f .

If f : N → N , then continuity condition (2) becomes:

(4) ∀λ ∈ N, ∃k ∈ N : ρ(β, α) <
1

k
⇒ ρ(f(β), f(α)) <

1

λ
.

I.e.,

(5) ∀λ ∈ N, ∃k ∈ N : β, α k-same ⇒ f(β), f(α) λ-same.

Another characterization of continuity is through sequential continuity i.e., f is contin-
uous iff for each α ∈ N , and (βn) a sequence in N ,

(6) βn → α⇒ f(βn)→ f(α).

Proposition A.15: The following are equivalent:
(i) f : N → N is continuous.
(ii) There is a map f ∗ : N<∞ → N<∞, such that:

(a) If N ≤M , then f ∗(α1, α2, ..., αN) � f ∗(α1, α2, ..., αM), i.e., f ∗ is monotone.
(b) f ∗ is not stagnant.
(c) f on α is given by

f(α) = supNf
∗(Nα),

i.e., sequence f(α) is approximated by finite sequences f ∗(Nα).

Proof: This is a direct consequence of Proposition 2.2, if X = Y = N and T = S =
N<∞. Obviously f ∗ is proper, because of (b).�
Of course, not every map f : N → N is continuous. E.g.,

f(α) =

{
0 , if α = 0
1 , if α 6= 0

Consider the sequence (βn) of elements of N , such that

βn = (0, 0, , ..., 0︸ ︷︷ ︸
n

, 1).

Then, βn → 0, since βn ∈ B(0, 1
n
), but f(βn)→ 1, while f(0) = 0.

Next result shows how easy it is, due to Proposition A.15 (ii) ⇒ (i), to find that a
certain map N → N is continuous.
We define the following symbol:

2kn =


(1, 1, ..., 1︸ ︷︷ ︸

n

, 0) , if k = even

(0, 0, ..., 0︸ ︷︷ ︸
n

, 1) , if k = odd
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Obviously,

2k0 =

{
(0) , if k = even
(1) , if k = odd

We define the standard injection Θ between N and C, Θ : N → C, which is also a
N → N map, as follows:

Θ(α1, α2, ..., αn, ...) = 21
α1

a 22
α2

a ... a 2nαn a ...,

where 22
α2

a ... a 2nαn a ... denotes the concatenation of all finite sequences 2iαi . Hence,

Θ(α1, α2, ..., αn, ...) = (0, 0, ..., 0︸ ︷︷ ︸
α1

, 1, 1, 1, ..., 1︸ ︷︷ ︸
α2

, 0, 0, 0, ..., 0︸ ︷︷ ︸
α3

, 1...).

Obviously, the value of a sequence α under Θ would be slightly different if we had
considered Θ(α0, α1, ..., αn, ...) = 20

α0
a 21

α1
a ... a 2nαn a ...114.

Proposition A.16: The standard injection Θ : N → C is a homeomorphism of the
Baire space on the subspace of all non-stagnant elements of Cantor space.

Proof: Θ∗ : N<∞ → 2<∞ is defined like Θ and it is obviously monotone, non-stagnant
(i.e., proper) and trivially Θ(α) = supNΘ∗(Nα). So, Θ is continuous. It is clearly
1 − 1 and its inverse is easy to define. E.g., Θ−1(0, 0, 0, 1, 0, 1, ...) = (3, 0, 0, ...). The
gradual construction of Θ−1(β1, β2, ..., βn, ...), where (β1, β2, ..., βn, ...) is a non-stagnant
sequence of C, shows that Θ−1 is also continuous. By its definition, Θ(α) cannot be
a stagnant sequence of C. Then, Θ is a homeomorphism of N on the non-stagnant
elements of C.�
The above results provides an example of a closed set of N , the continuous image of
which is not closed in N .
N is trivially closed and Θ(N ) is not, since

αn = (1, 1, ..., 1︸ ︷︷ ︸
n

, non− stagnant tail)

belongs to B(1, 1
n
) ∩Θ(N ), therefore, αn → 1, but 1 /∈ Θ(N ).

If f : N → N, then the general uniform continuity condition

(∃N)(∀ε > 0) d(α, β) <
1

N
⇒ d(f(α), f(β)) < ε

becomes
(∃N)(∀α, β) Nα = Nβ ⇒ f(α) = f(β),

114If we had defined Θ by

Θ(α1, α2, ..., αn, ...) = 2(α1) a 2(α2) a ... a 2(αn) a ...,

where

2(n) =


(1, 1, ..., 1︸ ︷︷ ︸

n

) , if n = even

(0, 0, ..., 0︸ ︷︷ ︸
n

) , if n = odd

then 1 is not the value of some n, therefore the definition of Θ cannot be completed.
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just by taking ε < 1.

Proposition A.17 (C and N are dimensionless): Cj is homeomorphic to C and N j

is homeomorphic to N , where j ∈ N or j = N.

Proof: We prove that CN is homeomorphic to C and N N is homeomorphic to N , since
the case j ∈ N is proved then in an obviously similar manner.
The first proof we give is through the topological characterizations of C and N .
It suffices to show that CN is T1, compact, with a countable base of clopen sets and with
no isolated points.
CN has the product topology and since C is T1, CN is also T1, and compact, by Tychonoff’s
theorem. A base for its topology is the collection

{
∏
n∈N

Bn| Bn ∈ B or Bn = C and |{n|Bn 6= C}| <∞},

where B denotes the countable base of clopen sets of C. B is countable, therefore, the
above base is also countable. Since

(
∏
n∈N

Bn)− =
∏
n∈N

B−n =
∏
n∈N

Bn,

∏
n∈NBn are closed and since

(
∏
n∈N

Bn)◦ ⊆
∏
n∈N

B◦n =
∏
n∈N

Bn,

and the inverse ∏
n∈N

B◦n ⊆ (
∏
n∈N

Bn)◦

also holds, because there is by the definition of the product base a finite set J of N for
which Bj = C, for each j ∈ N− J , then

∏
n∈NBn are also open.

CN has no isolated points because if {α1, α2, ..., αm, ..., } was open there is no basic set∏
n∈NBn contained in it, since most of the components of

∏
n∈NBn are C itself.

In a similar way to the case of N it suffices to show that N N has a countable base of
clopen sets, it has no non-empty clopen and compact subsets and it is metrizable as a
complete metric space.
The existence of a countable base of clopen sets is derived as in the previous case. If
K was a non-empty clopen and compact subset of N N, then πn(K), where πn is the
n-projection mapping, is also non-empty, compact (πn is continuous), and clopen (πn is
open mapping and πn(K) is closed, since it is compact) subset of N , which is absurd.
Also, it is standard that if (Xn, ρn) is a sequence of complete metric spaces, such that
ρn(x, y) ≤ 1, then the product X =

∏
n∈NXn with the product metric is complete

metric space. If Xn = C and ρn = ρ, we get the last property of N ’s characterization
for N N.

We can also prove the same results in a more direct way. We describe how for the
N -case, but it works for the C-case too.

120



Let P is a partition of N, such that all elements of P are infinite too115. I.e.,

N =
⋃
i∈I

Ni,

where |I| = ℵ0, Ni ∩Nj = ∅ and |Ni| = ℵ0, for each i, j. Let

Ni = {ki1, ki2, , ..., kin, ..., }.

We define e : N → N N as follows:

e(α) = (α1, α2, ..., αm, ..., )

where,
αm(n) = α(kmn ).

e is 1− 1, since if α 6= β, then there is i such that α(i) 6= β(i), where i = kmn for some
m,n. But then, e(α) 6= e(β) since otherwise, αm = βm, therefore, αm(n) = βm(n), i.e.,
α(i) = β(i), which is absurd.
e is onto N N, since for each element (α1, α2, ..., αm, ..., ) of N N, we define α by α(i) =
α(kmn ) = αm(n) and, obviously, e(α) = (α1, α2, ..., αm, ..., ).
e is sequentially continuous, therefore continuous. We know that

αj → α⇔ ∀λ ∃m(λ) ∀m m > m(λ) αm(λ) = α(λ).

If
e(αj) = (αj

1

, αj
2

, ..., αj
m

, ..., ),

then we know that e(αj)→ e(α) iff αj
i → αi, for each i.

The last condition is justified as follows: If we fix a natural λ, then

αj
i

(λ) = αj(kiλ) = α(kiλ),

for j > m(kiλ), and since α(kiλ) = αi(λ), the above convergence is established.
The continuity of e−1 is proved likewise.�
We add, in summary, the following topological characterizations of related spaces.

1. Topological characterization of the unit interval (Veblen 1905): Every con-
nected and locally connected metric space with two non-cut points116 is homeomorphic
to the unit interval [0, 1].

2. (Frechet 1910): A countable metrizable space is homeomorphic to a subset of
rational numbers.

3. Topological characterization of rationals (Sierpinski 1920):
(a) A countable dense to itself metric space is homeomorphic to the space of rational
numbers.

115We can construct such a partition, for example, as follows: N1 is the first natural, the third natural,
etc., i.e., the odd numbers. N2 is the first, the third, etc., of the remaining ones, and so on. Each even
number eventually is contained in some Ni for some i.
116If X is a connected topological space and x ∈ X, then x is a non-cut point iff X−{x} is connected,

otherwise it is called a cut point. Obviously all points of [0, 1] other than 1 or 2 are cut points.
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(b) A countable T1 topological space with a countable base of clopen sets and with no
isolated points is homeomorphic to the space of rational numbers117.

4. (Mazurkiewicz): A Gδ set which is itself and its complement dense in a separa-
ble, zero-dimensional and metrizable space, is homeomorphic to the space of irrational
numbers.

5. Topological characterization of reals
(a) (Ward 1936): A separable, connected and locally connected metric space X, for
each element x of which X−{x} has exactly two connected components, is homeomor-
phic to the space of real numbers.

(b) (Franklin, Krishnarao 1970): The above also holds if the hypothesis of metric
space is replaced by that of a regular topological space.

6. (Gruenhage, Schoenfeld 1975): A compact metric space which has, up to home-
omorphism, only two non-empty open subsets, is homeomorphic to the Cantor set.

7. Topological characterization of Cantor space (Brouwer 1910): A T1, com-
pact, with a countable base of clopen sets and with no isolated points topological space
is homeomorphic to Cantor space.

8. Topological characterization of Baire space (Alexandroff, Urysohn 1928):
A topological space with a countable base of clopen sets, without non-empty clopen
and compact subsets, which is also completely metrizable space is homeomorphic to
Baire space.

117A proof of it can be found e.g., in [Truss 1997] pp.254-5.
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[Brouwer 1927] Über Definitionsbereiche von Funktionen, Mathematische Annalen 97,
60-75, 1927. Also translated in English as “On the domains of definition of functions”,
in [van Heijenoort 1967], 446-463.

123



[Brouwer 1928a] Intuitionistische Betrachtungen über den Formalismus, Sitzungsberichte
der Preussischen der Wissenschaften zu Berlin, 48-52, 1928. Also translated in English,
except the second paragraph, in [van Heijenoort 1967] as “Intuitionistic Reflections on
Formalism”, 490-492, with chronology 1927, since it was presented in a lecture of 1927,
and it is entirely translated in english as “Intuitionist Reflections on Formalism”, in
[Mancosu 1998], 40-44.

[Brouwer 1929] Mathematik, Wissenschaft und Sprache, Monatshefte für Mathematik
und Physik 36(1), 153-164, 1929. Translated in English in [Mancosu 1998], 45-53.

[Brouwer 1933] Willen, Weten, Spreken, Euclides 9, 177-193, 1933. Translated in en-
glish as “Will, Knowledge and Speech”, in [van Stigt 1990], appendix 5.

[Brouwer 1942] Zum freien Werden von Mengen und FunKtionen, Indagationes Math-
ematicae, 4, 107-108, 1942.

[Brouwer 1947] Richtlijnen der intuitionistische wiskunde, Koninklijke Akademie van
Wetenschappen te Amsterdam, Proceedings of the Section of Sciences, 50, p.339; Indag.
Math. 9, p.197. Also translated in English as “Guidelines of intuitionistic mathemat-
ics” in [Brouwer 1975] p.477.

[Brouwer 1949a] De non-aequivalentie van de constructieve en negatieve orderelatie in
het continuum, Koninklijke Akademie van Wetenschappen te Amsterdam, Proceedings
of the Section of Sciences, 52, 122-124, 1949. Translated in English in [Brouwer 1975],
as “The non-equivallence of the constructive and the negative order relation on the
continuum”, 495-496.

[Brouwer 1949b] Contradictoriteit der elementaire meetkunde, Koninklijke Akademie
van Wetenschappen te Amsterdam, Proceedings of the Section of Sciences, 52, 315-316,
1949. Translated in English in [Brouwer 1975], as “Contradictority of elementary ge-
ometry”, 497-498.

[Brouwer 1952A] An intuitionist correction of the fixed-point theorem on the sphere,
Proc. Roy. Soc. London Ser. A 213, 1-2.

[Brouwer 1952B1] Historical background, principles and methods of intuitionism, South
African Journal of Science 49, 139-146, 1952. Also in [Brouwer 1975], 508-515.

[Brouwer 1954] Points and Spaces, Canadian Journal of Mathematics 6, 1-17, 1954.
also in [Brouwer 1975], 522-540.

[Brouwer 1975] L.E.J. Brouwer Collected Works, Part I, edited by A. Heyting, An an-
notated edition of Brouwer’s publications on the philosophy and foundations of math-
ematics, North-Holland, Amsterdam, 1975.

[Brouwer 1981] Brouwer’s Cambridge lectures on intuitionism, edited by D. van Dalen,
Cambridge University Press, 1981.

124



II. The rest of Bibliography

[van Atten, van Dalen 2002] M. van Atten, D. van Dalen: Arguments for the Continuity
Principle, The Bulletin of Symbolic Logic, 8, 329-347, 2002.

[van Atten 2004] M. van Atten: On Brouwer, Thomson Wadsworth, 2004.

[van Atten 2004] M. van Atten: Phenomenology’s Reception of Brouwer’s Choice Se-
quences, in [Peckhaus 2005], 101-117, 2005.

[van Atten 2007] M. van Atten: Brouwer meets Husserl, On the Phenomenology of
Choice Sequences, Springer, 2007.

[Becker 1927] O. Becker: Mathematische Existenz, Jarbuch für Philosophie und phänome
nologische Forschung 8, 439-809, 1927.

[Beeson 1985] M.Beeson: Foundations of Constructive Mathematics, Springer-Verlag,
1985.

[Benacerraf, Putnam 1983] P.Benacerraf, H. Putnam (eds.): Philosophy of Mathemat-
ics, Selected Readings, Cambridge University Press, 1983. [Beth 1959] E.W. Beth: The
Foundations of Mathematics, North-Holland Amsterdam, 1959.

[Bishop 1967] E. Bishop: Foundations of Constructive Analysis, McGraw-Hill, 1967.

[Bishop 1968] E. Bishop: Mathematics as a Numerical Language, in [Kino et.al. 1970],
53-71, 1968.

[Bishop 1975] E. Bishop: The Crisis in Contemporary Mathematics, Historia Mathe-
matica 2, 507-515, 1975.

[Borel 1909] E. Borel: Sur les principes de la théorie des ensembles, Atti del IV Con-
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